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1 Introduction

The Beltrami equation �����	��
�� states that the rotation of � is everywhere parallel to
the field. Due to this condition, a characteristic feature of all Beltrami fields is a constant
twisting. Such fields are found in many areas of physics. For instance, particle movement in
tornadoes and waterspouts can be approximated by Beltrami fields [8]. Also, with suitable
boundary conditions, the magnetic field inside a fusion reactor can be modeled as a Beltrami
field [4]. Beltrami fields are also used to solve Maxwell’s equations in bi-isotropic media
[7, 8].

In reference [1] a correspondence between Beltrami fields and contact structures on  -
manifolds is established. Here, this result is used to derive contact structures on ��� from
a special class of Beltrami fields, namely Trkalian vector fields. In Sections 2 and 3 of
this study, we give the necessary definitions for Beltrami fields, Trkalian fields, and contact
structures. The rest of the study is divided into two parts. In the Section 4, we combine the
above correspondence with a result about Trkalian vector fields on ��� [3]. As a result, we
obtain Proposition 4.2 from which contact structures on ��� can be generated. As a special
case, it follows that every analytic function on � generates a contact structure on ����� (Co-
rollary 4.5.) We also show that all the standard contact forms ����������� , ���! #"$&% �&���'�����(�*) ,
and +-,�./���(�0��.21435����� on �6� can be generated from Proposition 4.2. In the second part (Sec-
tion 5), the result of Section 4 is used to derive a contact structure on �7� from Maxwell’s
equations in isotropic medium. The conclusions and suggestions for further work are given
in Section 6.

Throughout this study, we assume that the underlying space is a real  -dimensional manifold
as defined in reference [15]; an 8 -dimensional manifold, denoted by 9;: , is a topological
Hausdorff space with countable base that is locally homeomorphic to � : . The space of
differential < -forms on 9 : is denoted by =?> % 9 : ) , and the tangent space at a point �A@B9 :
is denoted by CED(9 : . All functions, < -forms and vector fields are assumed FHG -smooth.
The Einstein summing convention is used throughout this work. By IBJK�ML and N5JO�ML we
denote the real and imaginary parts of a complex number � . The complex unit is denoted
by P!�RQ ��S .
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2 Trkalian fields

For completeness, we next define both Beltrami fields and Trkalian fields. In this work we
shall, however, only study Trkalian fields.

Definition 2.1 [1, 3] Let 9 � be a Riemann manifold, and let � be a vector field (with
possibly complex component functions.) If � ���;� � � for some function

��� 9 ��� � ,
then � is said to be a Beltrami vector field. If

�
is a non-zero real scalar, then � is said to

be a Trkalian vector field.

In the above definition, the Riemann metric plays a crucial role. Unfortunately this metric
dependence is not explicitly seen from the equation � � � � � � (a statement for the
vector field � .) For this reason, we shall use differential forms [9, 11, 14, 15].

With differential forms all the traditional differential operators � , � � , and ��� can be ex-
pressed using only two operators: the Hodge star operator � and the exterior derivative � .
The Hodge star operator, defined below, depends only on the Riemann metric. The exterior
derivative, on the other hand, is purely topological in the sense that it does not depend on
the metric.

Definition 2.2 [13] Let 9 : be a 8 -dimensional manifold with a Riemann metric 	 �	�
�O�(� 
�� ��� � . The Hodge star operator is the linear operator � � = > % 9 : )�� = :�� > % 9 : )
that maps the basis elements of =?> % 9 : ) as

� % ��� 
���� ����� � �(� 
� ) �
� � 	 �
% 8��H< )�� 	 
�� �!� �����"	 
#�$��&% � �(')')' � � � �$*+�$')')' �-,��(� �)�.*��/� ����� � ��� � ,10

where
� 	 � �3254�67	 
)� and

%
is the Levi-Civita permutation symbol,

%98 �(')')' 8$: � % 8 � ')')' 8 : �
;< =  S when 
 " ����� 
�> is an even permutation,
��S when 
 " ����� 
 > is an odd permutation,?

when 
 
 � 
 � 0 for some PA@�CBED
To transform vectors into 1-forms and vice-versa, we use the standard isomorphism induced
by the Riemann metric 	B�F	5
�O�(� 
G� �(� � [11]: By contracting the metric with the vector
field � ��� 
IHH D&J , we obtain the 1-form �LK��M	 % � 0 � )��N	�
)�K� 
 ��� � . This O -mapping
transforms vector fields into 1-forms. Since 	 
� is positive definite, the mapping also has an
inverse, a P -mapping. Let 	 
� denote the elements of the % 	 
� ) � " . For the 1-form Q �RQ 
 ��� 
 ,QTS �R	 
)� Q 
 HH D�U .

Definition 2.3 [11] Let 9 � be a Riemann manifold with a metric tensor 	 . The curl of the
vector field � is the vector field � �B� for which % � �B� )�K��V� ���WK . The gradient of a
function

�X� 9 �Y� � is the vector field � �
for which % � � )$K � �EZ .

From the definition of curl, we see that if � is a Trkalian vector field, then � ���[K � 
���K .
Reading this as an equation for the 1-form �\K , it will be motivated (in Section 4) to call �RK
a Trkalian 1-form.

Definition 2.4 Let 9 � be a Riemann manifold. A (possibly complex valued) 1-form ] on
9R� is a Trkalian 1-form if � �+] � 
^] for some non-zero 
 @�� .
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For easy reference, we end this section with some useful properties of the Hodge star oper-
ator.

Generally ����� % ��SK) >�� :�� > � Id � � ��� , � [13]. In three dimensions, ����� Id � � ��� � � for < �? 0 ����� 0  . In cartesian coordinates, the metric tensor is 	�� �(� � ���  �(� � ���� ��� � ��� ,
and the Hodge star operator is

� ��� � ��� � ��� 0 � ��� � ��� � ��� 0 � ����� ��� � �(�1D
3 Contact Structures

Suppose that for each < in 9 � we associate in a smooth manner a two-dimensional subspace�
> of C > 9 . We then say that

�
is a plane field on 9 � . An integral surface of

�
is a two

dimensional submanifold � of 9�� such that for all < @ 9 � , we have C > �
	 �
> [14]. An

integral surface to
�

is, in other words, a set of smooth surfaces everywhere tangential to
�
.

An arbitrary plane field usually does not have an integral surface. If the planes twist, the
planes can not be “stitched” together to form smooth surfaces. A plane field

�
that has no

integral surfaces, not even at a single point, is called a contact structure on 9 � [1, 5].

For the remainder of this study, we only consider plane fields
�

that globally can be written
as the kernel of a (real valued) 1-form ]�@ = " % 9R�O) , i.e.,

� ����4� ] . The plane field
�

is
then said to be transversally orientable, and ] is said to be a contact form for

�
[5]. The

reason for this restriction is given by Frobenius theorem below, which gives a sufficient and
necessary condition for

�
to be a contact structure in terms of ] .

Theorem 3.1 (Frobenius theorem [11, 14]) Let ] be a 1-form on a 3-manifold. The plane
field

� ����4�^] is a contact structure if and only if ] � �+] @� ?
.

Clearly, rescaling ] by a non-vanishing function does not modify the actual contact struc-
ture ��4�^] . It should also be pointed out that a contact structure does not require a metric
structure.

Here, we have only defined contact structures in three dimensions. However, the defini-
tion of a contact structure and the Frobenius theorem both generalize to manifolds of odd
dimensions [5, 11, 14].

The important correspondence between Beltrami fields and contact structures is established
in reference [1]. Here we are only interested in the result that Beltrami fields induce contact
structures. The related result for Trkalian 1-forms reads:

Proposition 3.2 Let 9 � be a Riemann manifold, and let ] be a real valued Trkalian 1-form
on 9 � . If ] is identically non-vanishing, then ] is a contact form on 9 � .

Proof: Since ] is a Trkalian 1-form, � �+] � 
5] for some non-zero 
A@B� . Then ] � �E] �

5] � �9] , which is the pointwise norm of ] [11]. Since ] is non-vanishing, ] � �+] @� ?

and,
by Frobenius theorem, ] is a contact form. �
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4 Contact structures from Trkalian vector fields

In reference [3] it is shown that Trkalian fields on �5� either have a cartesian symmetry or
a spherical symmetry. Moreover, general expressions are given from which every Trkalian
vector field on ��� can be derived; either in cartesian coordinates, or in spherical coordinates.
In this section, we will use Proposition 3.2 to derive a contact structure for Trkalian fields
with a cartesian symmetry. We begin by presenting the result of reference [3] in more detail.
The main result of this section is Proposition 4.2.

In reference [3] it is shown, by means of Monge potentials, that an arbitrary real vector field
on � � can be written as the real part of a complex vector field of the form

� � � 
�� � Z 0
where

� � � � � � and Z � �6� � � . The main result of reference [3] is the complete
classification of

�
, Z , and of the Riemann metric of � � when � is a solution to the Trkalian

equation
�	�����H� D

It is shown that there are only two possible cases:

a) There are Cartesian coordinates � 0 � 0 � such that
� � � , Z � � � � � is an analytic

function of �  P � , Z is independent of � , and

� � � 
�� � Z % �� P �/)�D (1)

or

b) There are spherical coordinates � 0��^0
	 such that
� ��� , Z � � �� J ? L � � is function

of P 	 � arc tanh % +-,�. � ) , and

� � � 
�� � Z�� P 	 � arc tanh % +-,�. � )
�ED (2)

For � to be single valued in the spherical geometry, Z must be either a ��� periodic
function of 	 or a complex scalar multiple of the identity function [3].

Trkalian vector fields and 1-forms are closely related. Suppose � is a complex Trkalian
vector field. Then ] � � K is a complex Trkalian 1-form, � �E] � 
5] , and I J�]�L is a real
Trkalian 1-form. Furthermore, if I J�]�LX@� ?

, then, by Proposition 3.2, IBJ ]6L is a contact
form on ��� . We next use this observation to derive a contact structure for Trkalian fields
with cartesian symmetry.

A. Cartesian coordinates
We assume the vector field has the slightly more general form

�	��� 
���� � Z % � 0 � 0 ��) 0
where � 0 � 0 � are the cartesian coordinates of �?� , � @ � is non-zero, and Z � �0� � � .
Furthermore, we assume that �0� is equipped with the standard cartesian metric.

Next, we derive conditions on Z for ] � � K to be a Trkalian 1-form, i.e., for � �+] � 
5] .
From Definition 2.3, we have

] � � K
� � 
���� �+Z D
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Here we can make an important observation. Even though the gradient and the O -operator
both depend on the Riemann metric, the 1-form % � Z7)EKB� �EZ does not depend on the
metric. In consequence, the Trkalian 1-forms corresponding to the vector fields 1 and 2 do
not depend on the metric. This motivates our choice to work with Trkalian 1-forms and
not with Trkalian vector fields. In fact, the above observation shows that the gradient of a
function Z should be defined as the 1-form �EZ and not as the vector field % �+Z7)5S [11].

Using the properties of the Hodge star operator in cartesian coordinates,

� �E] � P � � 
���� � Z!DY� % ��� � �(�*)E CZ � � % ��� � �(�/) �
� P � � 
���� � Z!D(����� Z � ��� � 0

where partial derivatives are written as H��H D �3Z D . From � �E] � 
5] we have

Z � � ? 0 P ZED��3Z � 0 �?P Z � �3ZED 0
and 
 � � . From the first condition, we see that Z must not depend on � . Also, by mul-
tiplying the third condition by P , we see that the second and third conditions are equivalent.
Then, writing Z ���  P�� ( � , � real), the second condition reads

��� D5 P��*D��	� �  P�� � D
These are the Cauchy-Riemann equations for � and � , i.e., Z should be an analytic function
of �  P � .

Proposition 4.1 Let � 0 � 0 � be the cartesian coordinates of �5� , and let � be the Hodge star
operator derived from the cartesian metric. Furthermore, let Z � �?� � � be an analytic
function of �  P � , and let Z be independent of � . If 
 @A� is non-zero, then ] ��� 
 8 � �+Z is
a complex Trkalian 1-form, � �+] � 
^] .

The above proposition, together with Proposition 3.2, shows that I 
 � 
 8 � �+Z�� is a contact
form on ��� provided that I 
 � 
 8 � �+Z�� @� ?

. The next proposition gives sufficient conditions
on Z for I 
 � 
 8 � �EZ � to be a contact form on � � . In particular, it shows that for I 
 � 
 8 � �+Z �
to be a contact form, Z can depend on � .

Proposition 4.2 Let � 0 � 0 � be the cartesian coordinates of �5� , and let Z � � �C� � be
a function whose real and imaginary parts are � and � . If the Jacobian of the mapping
% � 0 �/)�� % � % � 0 � 0 ��) 0 � % � 0 � 0 ��)2) is identically non-vanishing, and if 
 @�� is non-zero, then
I 
 � 
 8 � �EZ � is a contact form on ��� .

The proof is based on the following lemma.

Lemma 4.3 Let � 0 � 0 � be coordinates of �0� , and let Z � � �C� � be a function whose
real and imaginary parts are � and � . If ] � I 
 � 
 8 � �+Z � , where 
 @ � is non-zero, then] � �+] ��
���� � ��� � ��� .
Proof of lemma: From

] � +-,�. 
�������� .21435
������ 0
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and from

�E] � �5
 .2143 
������ � ��� � 
 +-,�. 
������ � ��� 0
it follows that

] � �+] � �5
'+ ,�. $ 
������ � ��� � ���� 
 .2143 $ 
������ � ��� � ���
� 
���� � ��� � ���7D

�
Proof of Proposition 4.2: Let ZR�	�  P�� ( � 0 � real). By the lemma,

] � �E] � 
/��� � ��� � ���
� 
 � �*D ���  � � �(�7 � � ��� � � � � D��(�� � � ���� � � ��� � � ���
� 
 � � D � � � � � � D � �(� � ��� � ���7D

The last parenthesis is the Jacobian of the mapping % �  P �/)�� � � % � 0 � 0 ��) 0 � % � 0 � 0 ��) � . By
assumption, it is identically non-vanishing, and, by Frobenius theorem, ] is a contact form
on � � . �
By the identification % � 0 � 0 ��) � % �  P � 0 ��) , the above proposition gives a contact structure
on � ��� . It is then natural to ask whether Proposition 4.2 generalizes to higher dimensions.
For instance, consider the % � �  �S ) � dimensional space ��� �B� with

��� S . In view of
Proposition 4.2, it would be natural to define a contact form on ��� �5� by ] � I 
 � 
 8 � �+Z �
for a suitable function Z � ��� ��� . To show that this is a contact form we need Frobenius
theorem for � �  S dimensions.

Theorem 4.4 (Frobenius theorem, [11, 14]) Let 9 $
�	� " (

��
 S ) be an odd dimensional
manifold, and let ] be a 1-form on 9 $

�	� " . The hyperplane
� � �E4�^] is a contact structure

if and only if the % � �  SK) -form ] � �+] � ����� � �+] is identically non-vanishing on 9 $
�	� " .

From ] �RI 
 � 
 8 � �EZ � , we see that �E] � I 
 �?P 
� 
 8 � �EZ � � ��� . Therefore �E] � �E] � ?
,

and Proposition 4.2 does not, as such, generalize to higher dimensions.

Proposition 4.2 is stated in the most general form. However, if we assume that Z is an
(non-constant) analytic function with respect of �� P � , then the Jacobian in the assumption
is identically non-vanishing. This gives the following corollary of Proposition 4.2.

Corollary 4.5 Let � 0 � 0 � be the cartesian coordinates of �5� , and let Z � �6� ��� be a non-
constant analytic function with respect of �  P � for all values of � . If 
 @ � is non-zero,
then ] � I 
 � 
 8 � �+Z � is a contact form on � � .

B. Spherical coordinates
To model the spherical symmetry of the vector field 2, it is necessary to introduce coordinate
functions � % � 0 � 0 ��) , � % � 0 � 0 ��) and 	 % � 0 � 0 ��) . These are one-to-one only when the point
� � ?

is removed. One then obtains the space �?� � J ? L , which no longer can be covered by
only one chart. As noted in reference [12], the transition functions for the above coordinate
function are complicated. Since the analysis seems to be quite involved, we shall not study
contact structures induced by spherical Trkalian fields.

The space �6� � J ? L can be identified with �
$ �B� � , where �

$
is the unit sphere in ��� and

� � is the radial coordinate. By Proposition 3.2, Trkalian fields with spherical symmetry are
then seen to generate contact structures on �

$ �H� � .
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4.1 Standard structures on ��� .
We next show that the standard contact forms ��� � ����� 0 ���� "$ � ���(� � �&��� � 0 and the
overtwisted contact form +-,�. �6�(� � . 1 3 �6��� on � � can all be generated from the above
propositions.

Finding expressions for Z for which I 
 � 
 8 D �+Z � , I 
 � 
 8 � �+Z � , or I 
 � 
 8 � �+Z � equals the
above contact forms involves some algebra best done with a computer. Omitting the details,
we here only give expressions for Z and verify that these indeed generate the sought contact
forms.

� To obtain �����A����� , let Z % � 0 � 0 ��)6�R�?P % �5 P ��) � � 
 D . Then Z is an analytic function
of �7 P � for all � . By Corollary 4.5 with 
�� S ,

I 
 � 
 8 D �EZ � � I 
 �?P � � � � 
 D % �� P ��)�� � 
 D �
� I J�� % �� P ��) ����� P ���� ���/L
� ����� �����

is a contact form.� To obtain ���  "$ � �&��� � ���(� � 0 let Z % � 0 � 0 ��)6��� � 
 � � % �5 P � )!� D �$ � . Now Z is not
analytic. However, the real and imaginary parts of Z are

� � I J�Z L
� % ��� � �� )�+ ,�.��7 �5. 1 3?�

0
� � N5J&Z L

� % �&�� � ��)/. 1 3 �� �5+-,�./�

whence the Jacobian of the mapping % � 0 �*) � � � % � 0 � 0 ��) 0 � % � 0 � 0 ��) � equals

� � � D�� � D�� � � +-,�./� �(+-,�./�� � � .2143?� �� .2143?� � .2143?� �
�
� +-,�.�� �

� S�D
We can therefore use Proposition 4.2 with 
�� S . It follows that

I 
 � 
 8 � �+Z � � I
�
� 
 � � � � � 
 � % �� P �*) � �&�� ���

� I
�
% PE� � � ) ���  �� % �?P ) � % �� P � ) � � �� � � � �
	 ���� �����

� ���  S
� % �&��� � ����� )

is a contact form.� To obtain the overtwisted contact form +-,�. �6�(�H� .2143 �6��� , let Z % � 0 � 0 ��) � �  P � .
Then, by Corollary 4.5 with 
�� S ,

I 
 � 
 8 � �+Z � � +-,�. �6�(� � .2143 ���(�
is a contact form.
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5 Contact structures from Maxwell’s equation

In this section, we show that solutions to Helmholtz’s equation � � % � ��� ) ��
 $ � induce
solutions to the Trkalian equation �;� � �;
�� . As a consequence from the previous
section, solutions to Helmholtz’s equation then induce contact structures on ��� . Since the
electric and magnetic fields in Maxwell’s equations both solve Helmholtz’s equation, we
obtain two contact structures, one related to the electric field, and one related to the magnetic
field.

5.1 Helmholtz’s equations

To apply the theory from the previous section, Helmholtz’s equation must first be written
using differential forms. For this reason, let � be a vector field (with possibly complex
component functions,) and let 
 @ � be non-zero. Helmholtz’s equation for � then reads
� � % � � � ) � 
 $ � . From Definition 2.3, we find that % � � % � � � )2)�K�� � � % �	�
� ) K �[� � � ��� K . We then say that the (possibly complex valued) 1-form ] is a solution to
Helmholtz’s equation if � � �0�+] � 
 $ ] for some non-zero 
 @�� .

In reference [2] it is shown that Trkalian vector fields and solutions to Helmholtz equation
are closely related. Translated into differential forms we have the following:

Proposition 5.1 [2] Let 9 � be a Riemann manifold. Furthermore, let � be a possibly
complex valued 1-form on 9#� , and let 
 @�� be non-zero.

a) If � is a Trkalian 1-form, � ��� � 
�� , then � is a solution to Helmholtz’s equations� � �0��� � 
 $ � .

b) If � is a solution to Helmholtz’s equation � ���5��� � 
 $ � , then ] � � ���A 
�� is a
Trkalian 1-form, � �+] ��
5] .

Proof: If � ���B��
�� , then � � �0��� � � ��
�� � 
 $ � . Conversely, if � � �0��� � 
 $ � , then

� �E] � � � �0���  R� ��
��
� 
 � �0���  
��E)
� 
5]TD

�

5.2 Maxwell’s equations

Traditionally Maxwell’s equations are written using vectors fields in the inner product space
� � . They can, however, equivalently be formulated using differential forms, the external
derivative, and the Hodge star operator. The main advantage of the latter formalism is
that Maxwell’s equations split into two sets of equations: One, which is purely topological
depending only on the exterior derivative, and another, which is purely metrical depending
only on the Hodge star operator. With differential forms, the different physical fields also
divide into forms of different degrees with different geometrical interpretations [9, 10].
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Here, we only consider the source-less Maxwell’s equations. We also assume time harmonic
fields with time convention � 
���� , where Q � ?

is the angular frequency of the solution [6].
Maxwell’s equations then read

� � � �?P Q�� 0 (3)

��� � P Q�	 D (4)

In the above,
�

and � are the electric and magnetic field 1-forms, and 	 and � are the
electric and magnetic flux 2-forms. The forms

� 0 � 0 � and 	 are all complex valued on
� � depending only on the spatial variables.

Equations 3-4 are purely topological and do not depend on the metric of the underlying
space. The constitutive equations, on the other hand, are purely metrical and describe the
electrical properties of the medium. In the most simple medium, the homogeneous linear
non-dispersive isotropic medium [6], they read

� � 
 ��� 0 (5)

	 � �/� � D (6)

We also assume that � � ?
and 
 � ?

.

From equations 3 and 5, and from ����� S , it follows that

� � �0� � � 
 $ � 0
� � �0��� � 
 $ � 0

i.e.,
�

and � satisfy Helmholtz equation. Here, 
A� Q Q 
� � ?
is the wave-number. We

also define the intrinsic impedance of free space, ��� �

���� . By Proposition 5.1,

]�� � � � �  
 �
� 
 � � � P���� � 0]�� � � ���� 
��
� 
 � �  P

�
� �

are both complex Trkalian 1-forms: � �+] � � 
5] � , and � �E] � � 
^] � . Since 
 is a real
number, I J � � P���� L is a real Trkalian 1-form. If I J � � P���� L @� ?

, then I J � � P���� L
is a contact form on �'� . Similarly, if I

�
�� 
� � � @� ?

, then I
�
�  
� � � is a con-

tact form on ��� . Since 
� ]�� � ]�� , both contact structures contain essentially the same
“information.”

5.3 Plane-wave in isotropic medium

We next study the contact structure ] � for the special case of a plane-wave solution to
Maxwell’s equations in cartesian coordinates � 0 � 0 � with corresponding cartesian metric.
We assume the electric field is of the form

� � %�� ���  �� �(�/) � 
 8 � 0
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where � � � �� P � 
 and � � � �� P � 
 are complex constants determining the polarization
of the wave. The corresponding magnetic field is

� � PQ 
 �0� �
� S

� � ����� � � �(� � � 
 8 � D
The contact form is then

]�� � IBJ � � P���� L
� I

� � � % � �' �� 
 ) �(�� % � � � � 
 ) ��� �K 
P � % � 
 � � � ) �(�  % � �  � 
 ) ��� � 	 � 


8 � �/D
We now see that ] � can be interpreted as a plane-wave since it has the same form as

�
and

� . We next show that independent on the polarization of
�

and � , ] � is always circulary
polarized. In traditional vector notation the plane-wave

X � % X �  P X 
 ) � 
 8 � (7)

(X � 0 X 
 real vectors) is said to be circulary polarized if
�
X 
 � � �

X � � and X 
 � X � � ?
. It is

readily seen that ] S� satisfies these conditions.

Lemma 4.3 yields

]�� � �E]�� � 
 � % � �  � 
 ) $  % � 
 � � � ) $ � ��� � �(� � ��� D
In particular we see that the contact condition ] � � �E] � @� ?

does not involve the medium
parameters � and 
 .

The energy of the plane-wave 7 is defined as�
X � � $  �

X 
 � $ D
If � and � are real, the condition ] � � �+]�� @� ?

states that the energy of plane-wave should
not be zero. For a plane-wave, this is not very interesting. However, it does suggests that
the contact condition ] � � �+]�� @� ?

is related to the non-vanishing of the electromagnetic
energy also for more general solutions.

If we take � � S , � � ?
, we obtain the overtwisted contact structure

]�� � + ,�. 
/������� .21 35
������1D
The contact form ] � can be interpreted as a point in J �(� 0 ��� L space rotating around the
� -axis with an angular frequency 
�� Q Q � 
 . If we assume that 
�� � ?

in ] � , and use first
order approximations for .21 3 and +-,�. , we obtain

I J�]�L � ��� � 
����(� 0
which resembles the standard contact form on ��� [5]. It is straightforward to show that the
approximation of ] � is a contact form, but not a Trkalian 1-form. In other words, in the
approximation, the contact property is preserved, and the Trkalian property is lost.

In reference [1] Beltrami fields are qualitatively described as being highly unstable to per-
turbations. Contact structures, on the other hand, are described as structurally stable. Since
Beltrami fields involve both the metric and the topology of the underlying space, and since
contact structures only depend on the topology of the space, this description seems natural.
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6 Conclusions

In Section 4, we combined results from references [1] and [3]. As a result, we obtained
Proposition 4.2 from which contact structures on � � can be generated. We have also shown
that all the usual standard structures on � � can be generated from the proposition. A natural
way to extend the proposition would be to prove, or disprove, that every contact structure
on � � can be generated by the proposition.

Proposition 4.2 was derived from Trkalian vector fields with cartesian symmetry. In refer-
ence [3], it was, however, shown that there also exists another class of Trkalian fields with
spherical symmetry. In this work, these have not been studied. It would, of course, be
interesting to derive a similar proposition to 4.2 for these fields.

With differential forms Maxwell’s equations split into a topological part (depending on the
exterior derivative) and a metrical part (depending on medium parameters and the Hodge
star operator.) In Section 5, we have shown that solutions to Maxwell’s equations gener-
ate contact structures on �'� . Since contact structures do not require a metric structure, we
could, at least in some sense, claim that the induced contact structures extract a topological
component from the solutions. In Section 5.3 we have shown that for plane waves in iso-
tropic medium, the contact structure does not depend on the medium parameters � and 
 .
Instead, it is related to the polarization and the energy of the wave. One would expected
that for more general solutions to Maxwell’s equations, the contact structure is also related
to polarization and energy.

Here, we have only studied Maxwell’s equations in isotropic media. We can therefore not
deduce that in a more general medium, the contact structures would not depend on the
medium parameters. A natural way to continue would therefore be to calculate the contact
structures for more general media [6, 7, 8]. If one would find media for which the contact
structure depends on the medium’s parameters, it could be possible to gain further insight
on these parameters.
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