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Abstract

The Mazur-Ulam theorem states that a bijective isometry between
two normed spaces is an affine map. This note is based on the observa-
tion that symmetrization of norms preserve isometries. Using this ob-
servation, we show that the Mazur-Ulam theorem for non-symmetric
norms follow directly from the Mazur-Ulam theorem for symmetric
norms (Section 1). In addition, using this observation we present a
direct proof of the Mazur-Ulam theorem for smooth non-symmetric
Minkowski norms (Section 2). The notion of Minkowski norms in this
note bears no connection with non-definite inner products in relativ-
ity.

1 Normed spaces

Suppose V is a real vector space. By a norm on V we mean a function
F : V → R such that

1. F (v) ≥ 0 for all v ∈ V and F (v) = 0 if and only if v = 0.

2. F (λv) = λF (v) for all v ∈ V and λ > 0.

3. F (u + v) ≤ F (u) + F (v) for all u, v ∈ V .

If F (v) = F (−v) for all v ∈ V , then F is symmetric. If (V, F ) and
(W,G) are two normed spaces and Ψ: V → W is a map, then Ψ is an
isometry if

G(Ψ(a) − Ψ(b)) = F (a − b), a, b ∈ V. (1)

Also, a map Ψ between vector spaces is affine if Ψ − Ψ(0) is linear.
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Example 1.1. Suppose (V, F ) is a normed space, and Ψ: V → W is a
bijective affine map. Then Ψ is an bijective isometry between normed
spaces (V, F ) and (W,F ◦ (Ψ − Ψ(0))−1).

The Mazur-Ulam theorem shows the converse of the above exam-
ple:

Theorem 1.2 (Mazur-Ulam, 1932). A bijective isometry between
two normed spaces is affine.

Let us point out that if an isometry is a surjection, it is a bijec-
tion. Therefore the Mazur-Ulam theorem is sometimes also formu-
lated for surjective isometries. Proofs for the Mazur-Ulam theorem
for symmetric norms can be found in [Lax02, Tho96, V0̈3]. Our next
aim is to show that this symmetric Mazur-Ulam theorem implies the
non-symmetric Mazur-Ulam theorem, that is, Theorem 1.2. For this
purpose, let us define the symmetrization of a norm F : V → R as

F̂ (v) =
F (v) + F (−v)

2
, v ∈ V.

It is not difficult to check that F̂ is always a symmetric norm. A
direct calculation also gives the following result:

Proposition 1.3. Suppose (V, F ) and (W,G) are normed spaces, and
F̂ and Ĝ are symmetrizations of F and G, respectively. If Ψ: (V, F ) →
(W,G) is an isometry, then Ψ: (V, F̂ ) → (W, Ĝ) is an isometry.

Proposition 1.3 now reduces the non-symmetric Mazur-Ulam theo-
rem to the symmetric Mazur-Ulam theorem; If Ψ: (V, F ) → (W,G) is
a bijective isometry between normed spaces, then Ψ: (V, F̂ ) → (W, Ĝ)
is a bijective isometry between symmetric normed spaces, and by the
symmetric Mazur-Ulam theorem, Ψ is affine.

2 Minkowski spaces

Hereafter we only work with finite dimensional vector spaces. We
shall never explicitly write out the basis. However, if v is a vector,
we denote by vi its components in some unspecified fixed basis. Also,
∂f
∂vi denotes partial differentiation with respect to these basis vectors.
The Einstein summing convention is used throughout.

Let V be a finite dimensional real vector space. Then a Minkowski
norm on V is a function F : V → [0,∞) such that [BCS00, She01].
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1. F is smooth on V \ {0}.
2. F is positively 1-homogeneous; for v ∈ V and λ > 0,

F (λv) = λF (v).

3. F is strongly convex; for each v ∈ V \ {0},

gij(v) =
1

2

∂2F 2

∂vi ∂vj
(v)

is a positive definite matrix.

If (V, F ) and (W,G) are Minkowski spaces, and Ψ: V → W is
smooth map, then Ψ is an isometry provided that equation (1) holds.
We can now state the Mazur-Ulam theorem for Minkowski norms:

Theorem 2.1 (Mazur-Ulam, 1932). A bijective isometry between
two Minkowski spaces is affine.

One can prove that every Minkowski norm satisfies the triangle
inequality, and that every Minkowski norm is a norm in the above
sense [BCS00, She01]. Hence Theorem 2.1 is a corollary of Theorem
1.2. Our next aim is to give a direct proof of Theorem 2.1. For this,
we need some preliminaries.

Suppose r is an integer, and f : V → R is smooth on V \{0}. Then
f is positively r-homogeneous if

f(λv) = λrf(v), v ∈ V, λ > 0.

Similarly, f is absolutely r-homogeneous if

f(λv) = |λ|rf(v), v ∈ V, λ ∈ R \ {0}.

An important property of Minkowski norms is that each y ∈ V \{0}
induces an inner product gy(u, v) = gij(y)uivj . Symmetric Minkowski
norms are defined as for norms. However, we shall define the sym-
metrization of Minkowski norms slightly differently than for norms.
Instead of symmetrizing the norm, we symmetrize the inner product.

Proposition 2.2 (Symmetrization of Minkowski norms). Sup-
pose (V, F ) is a Minkowksi space. Then

F̂ (v) =

√

F 2(v) + F 2(−v)

2
, v ∈ V

is a symmetric Minkowski norm for V . (Here,
√· is the positive square

root.)
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Proof. This follows as the sum of two positive matrices is again posi-
tive definite.

For Minkowski norms, the analogue of Proposition 1.3 is:

Proposition 2.3. Suppose (V, F ) and (W,G) are Minkowski spaces,
and F̂ and Ĝ are symmetrizations of F and G, respectively. If Ψ:
(V, F ) → (W,G) is an isometry, then Ψ: (V, F̂ ) → (W, Ĝ) is an isom-
etry.

If F is a symmetric Minkowski norm, then F 2 is absolutely 2-
homogeneous, and the following relations hold for all v ∈ V \ {0} and
λ 6= 0,

∂F 2

∂vi
(λv) = λ

∂F 2

∂vi
(v), (2)

∂2F 2

∂vi ∂vj
(λv) =

∂2F 2

∂vi ∂vj
(v), (3)

∂2F 2

∂vi ∂vj
(v)vj =

∂F 2

∂vi
(v). (4)

Equations (2)-(3) follow by differentiating F 2(λv) = λ2F 2(v) with
respect to vi. Equation (4) is known as Euler’s theorem and it follows
by differentiating equation (2) with respect to λ.

Proof of Theorem 2.1. Let Ψ: (V, F ) → (W,G) be the isometry, let
a, b ∈ V \ {0}, a 6= b be arbitrary, and let ∆uv = Ψ(u) − Ψ(v) for
u, v ∈ V . By Proposition 2.3, we may assume that F and G are
symmetric. Let vi and wi be coordinates for V and W , respectively.
Differentiating the square of equation (1) with respect to ai gives

∂2F 2

∂vi ∂vj
(a − b)

=
∂2G2

∂wl ∂wm
(∆ab)

∂Ψl

∂vi
(a)

∂Ψm

∂vj
(a) +

∂G2

∂wl
(∆ab)

∂2Ψl

∂vi ∂vj
(a).

Let us fix a, c ∈ V \ {0}, and let b = b(t) ∈ V be the solution to
∆ab(t) = tc for t ∈ R \ {0}. Then a 6= b(t), so the right hand side of
the above equation is always an invertible matrix. Let A be the first
term. It is positive definite, and by equation (3), A is independent of
t. Similarly, by equation (2), the second term depends linearly on t.
Hence it equals tB for a symmetric matrix B, and A+ tB is invertible
for t 6= 0. By Lemma 2.4, B = 0. Thus, by equation (4), the Hessians
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of Ψl must vanish for all l and a ∈ V \ {0}. As Ψ is smooth, the
Hessians must also vanish for a = 0. The result follows from Lemma
2.5.

Lemma 2.4. Suppose A, B are real symmetric matrices, and A is
positive definite. If A + tB is invertible for all t ∈ R \ {0}, then
B = 0.

Proof. Let us first show that σ(A−1B), the spectrum of A−1B, is real.
To see this, let S be the positive definite square root of A. Then

σ(A−1B) = σ(SA−1BS−1) = σ(S−1BS−1), (5)

and the claim follows since S−1 is symmetric. Next, by the assumption
on A + tB, A−1B − tI is invertible for all t 6= 0. Thus σ(A−1B) ⊆
{0} ∪ C \ R. Thus σ(A−1B) = 0, and by equation (5), B = 0 as
S−1BS−1 is diagonalizable.

Lemma 2.5. A smooth function f : R
n → R is affine if and only if

its Hessian is identically zero.

Proof. If the gradient of a function f : R
n → R vanishes identically,

then f is constant. Thus, if x ∈ R
n, and γ is a smooth curve from 0 to

x, then 0 =
∫

γ
df = f(x)− f(0). See [Con96], p. 168. By assumption,

∂

∂xi

(

∂f

∂xj

)

(x) = 0

for all i, j = 1, . . . , n and x ∈ R
n, so

∂f

∂xj
(x) = Cj

for some constants C1, . . . , Cn. Thus

∂

∂xj

(

f(x) −
n
∑

l=1

Clx
l

)

= 0

and the result follows.
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