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Abstract

We study the complex Riccati tensor equation

DċG + GCG − R = 0

on a geodesic c on a Riemannian 3-manifold. This non-linear equation

appears in the study of Gaussian beams. Gaussian beams are asymptotic

solutions to hyperbolic equations that at each time instant are concen-

trated around one point in space. When time moves forward, Gaussian

beams move along geodesics, and the Riccati equation determines the Hes-

sian of the phase function for the Gaussian beam. The imaginary part of

a solution G describes how a Gaussian beam decays in different directions

of space. The main result of the present work is that the real part of G is

the shape operator of the phase front for the Gaussian beam. This result

generalizes a known result for the Riccati equation in R
3. The idea of the

proof is to express the Riccati equation in Fermi coordinates adapted to

the underlying geodesic. In Euclidean geometry we also study when the

phase front is contained in the area of influence, or light cone.

1 Introduction

We shall study the following equation:

Suppose c is a geodesic parametrized with respect to pathlength in a
Riemannian manifold. The complex tensor Riccati equation for tensor
G = Gij(t)dxi ⊗ dxj |c(t) on c is the equation

DċG + GCG − R = 0, (1)

G(0) = G0,

where tensors C = Cij ∂
∂xi ⊗ ∂

∂xj and R = Rijdxi ⊗dxj on c are defined as

Cij(t) = (gij − ċiċj)(t),

Rij(t) = (Rm
ijk ċkgmlċ

l)(t),

and G0 is a symmetric complex initial value with positive definite imagi-
nary part. (Precise terminology is given below.)
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This non-linear equation arises in the study of Gaussian beams. These are
asymptotic solutions to Maxwell’s equations [3, 8, 9, 10] (or wave equation [11,
12, 17], or elastic equation [13]) that have a very characteristic feature. Namely,
at each time instant the whole energy of the solution is concentrated around one
point in space. When time moves forward, the energy concentration traverses
a curve in space, but its envelope is always a Gaussian bell curve. Gaussian
beams are named after this property. Electromagnetic Gaussian beams are
also known as quasi-photons [9]. A historical account on the development of
Gaussian beams can be found in [16].

The motivation for studying Gaussian beams is that their propagation is
completely determined by a set of ordinary differential equations. This means
that it is much more easier to propagate a Gaussian beam than to solve the orig-
inal equations (say, Maxwell’s equations in the time domain). In view of this
property they have been used to study the traveltime problem: how long does
it take for a signal to travel between two points in a possibly inhomogeneous
anisotropic media [11, 12]. In this setting, the physical media determines the
Riemannian metric, and Gaussian beams propagate along geodesics of this met-
ric. What is more, the complex tensor Riccati equation determines the Hessian
of the phase function for a Gaussian beam (see Section 2.1).

It is well known that the imaginary part of a solution to the complex Riccati
equation describes how the Gaussian beam decays in different directions of space
(see Section 2.1). The main result of the present work is Theorem 4.5. It
shows that the real part of a solution is essentially the shape operator of the
phase front for the Gaussian beam (see Section 2.2). This provides a geometric
interpretation of solutions to the complex tensor Riccati equation. Even if the
equation is non-linear and the real and complex parts are coupled, both parts
have a geometric interpretation. A similar result holds for the real Riccati
equation in differential geometry. The shape operator for a family of surfaces
determined by a distance function satisfy the real Riccati equation [6, 18].

In Euclidean space, the geometric character of the real part of a solution
to equation (1) is known [2]. However, in this case, the Riccati equation is
not a tensor equation, and the shape operator is calculated with respect to
the Euclidean geometry and not with respect to the geometry induced by the
physical media. The main tool for proving Theorem 4.5 are explicit expressions
for Fermi coordinates around a geodesic. These are presented in Section 3, and
in Section 4 we study the Riccati equation in these coordinates.

In this work we also study properties of the shape operator for solutions in
the Euclidean geometry corresponding to homogeneous media (Section 5). In
particular, we study when the phase front is contained in the area of influence
(or the light cone) and give a sufficient condition on the initial values for this
to hold for large t.

Basic definitions

We shall work in a differential geometric setting and assume that all objects are
smooth. By a manifold M we mean a Hausdorff, second countable, topological
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manifold with smooth transition maps. Its tangent and cotangent bundles (over
R) are denoted by TM and T ∗M , respectively. Let us also assume that I is an
open interval containing 0 (but also sometimes the identity matrix). Further-
more, let us assume that M is equipped with a Riemannian metric tensor g and
locally g = gij dxi ⊗ dxj . The Einstein’s summation convention is employed
throughout the paper. By gij we mean the ij:th entry of the inverse of (gij).
Christoffel symbols Γijk , Γi

jk are defined as

Γijk =
1

2

(

∂gik

∂xj
+

∂gij

∂xk
− ∂gjk

∂xi

)

,

Γi
jk = giaΓajk.

A curve c : I → M is a geodesic parametrized with respect to pathlength if

d2ci

dt2
+ Γi

jk(t)ċj ċk = 0,

gij(t)ċ
iċj = 1.

As above, we will frequently use notation gij(t), Γi
jk(t), etc., which simply means

that gij and Γi
jk are evaluated at c(t). The components of the Riemann curva-

ture tensor R = Rm
ijkdxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xm are

Rm
ijk =

∂Γm
ik

∂xj
−

∂Γm
ij

∂xk
+ Γs

ikΓm
js − Γs

ijΓ
m
ks. (2)

If (xi, yi) are local coordinates for TM induced by xi-coordinates for M , we
define

N i
j(x, y) = Γi

jk(x)yk .

Let us also introduce notation

pi(t) = gij(t)ċ
j(t). (3)

A complex tensor on a curve c is a mapping that map a point t ∈ I into a
tensor on M at c(t) with possibly complex coefficients. Locally such a tensor α
is determined by suitable functions αk1···km

i1···in
: I → C, such that

α(t) = αk1···km

i1···in
(t) dxi1 ⊗ · · · ⊗ dxin ⊗ ∂

∂xk1

⊗ · · · ⊗ ∂

∂xkm

∣

∣

∣

c(t)
.

A more detailed discussion is given in [3]. For a tensor α = αi(t)dxi, its covariant
derivatives along the curve c is defined as

Dċα =

(

dαi

dt
− αkNk

i ◦ ċ

)

dxi
∣

∣

∣

c(t)
,

and for higher tensors D(u⊗v) = D(u)⊗v+u⊗D(v). By X (M) we denote the
set of smooth vector fields on M . Suppose X = X i ∂

∂xi ∈ X (M), and α = αidxi
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is a 1-form on M . Then for a vector v = vi ∂
∂xi ∈ TM we define covariant

derivatives

DvX = vk

(

∂X i

∂xk
+ XjΓi

jk

)

∂

∂xi
,

Dvα = vk

(

∂αi

∂xk
− αjΓ

j
ik

)

dxi.

By Re L, Im L we mean the real and imaginary parts of a tensor or matrix L,
and δij , δj

i are Kronecker delta symbols. By A we mean the closure of a set A.

Shape operator

Suppose S is a orientable hypersurface of a manifold M (that is, an n − 1
dimensional submanifold), and suppose that n : S → TM is a unit normal to S.
Let p ∈ S, and let U ⊂ M be a neighbourhood of p. By shrinking U , we can
extend n into a vector field n̂ : U → TU . We may also assume that g(n̂, n̂) = 1
on U . For v ∈ TpS, let

L(v) = (Dvn̂)(p).

The identity v(g(X, Y )) = g(DvX, Y )+ g(X, DvY ) for v ∈ TpM , X, Y ∈ X (M)
implies that L(v) ∈ TpS. What is more, if (x1, . . . , xn) are submanifold coordi-
nates for S such that (0, x2, . . . , xn) parametrize S around p, then writing out
(Dvn̂)(p) shows that L(v) does not depend on the extension n̂. The mapping

L : TpS → TpS

is the shape operator (or Weingarten map) of hypersurface S. It is determined
up to a sign with respect to n. Let us also point out that sometimes the shape
operator is defined as −Dv(n̂)p [20]. One can show that the eigenvalues of L are
real. On a 3-manifold, L has 2 eigenvalues κ1, κ2 called principal curvatures.
The Gaussian curvature is defined as K = κ1κ2, and the mean curvature is
defined as S = 1

2 (κ1 + κ2).

2 Riccati equation for Gaussian beams

2.1 Physical background

Let us briefly describe Gaussian beams and their relation to the complex tensor
Riccati equation. Detailed expositions on this topic are [3, 9, 10, 11, 17]. Let
us start with the source-less Maxwell’s equations for differential forms

dE = −∂B

∂t
,

dH =
∂D

∂t
,
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and let us consider an electric field of the form

E(x, t) = Re {E0(x, t) exp (iP θ(x, t))} , (x, t) ∈ M × I.

Here P > 0 is a large constant, I is an open interval representing time, E0 is a
complex 1-form, and the function θ : M×I → C is the phase function for E. The
advantage of representing the electric field as above is that qualitatively E0 and
θ contain different type of information. The 1-form E0 completely determines
how E is polarized. To understand the role of θ, let us write

exp (iP θ(x, t)) = exp(iP Re θ) exp(−P Im θ).

Thus, Re θ describes high frequency oscillations of E, that is, information about
propagation, while Im θ influences the amplitude of E. In order for E to be
stable in the limit P → ∞, let us assume that Im θ ≥ 0.

Suppose c : I → M is a smooth curve. Furthermore, suppose c is covered
with local coordinates xi, and suppose that

φ : I → C, p : I → C
3, H : I → C

3×3

are the first three coefficients in the Taylor expansion of θ evaluated on c(t).
That is,

φ(t) = θ(c(t), t),

pj(t) =
∂θ

∂xj
(c(t), t),

Hjk(t) =
∂2θ

∂xj ∂xk
(c(t), t).

Then E is a Gaussian beam on c provided that for all t ∈ I ,

1. p(t) = (pi(t))i is non-zero,

2. φ(t) and p(t) are real,

3. the imaginary part of H(t) = (Hij(t))ij is positive definite.

One can also show that these conditions do not depend on local coordinates
[3, 11]. Using the chain rule, it follows that [3]

θ(x, t) = φ0(t) + pi(t)z
i +

1

2
Hij(t)z

izj + o(|z|3),

where zi = zi(x, t) = xi−ci(t). In consequence, | exp (iP θ(x, t)) | ≈ exp
(

−P
2 zi Im Hijz

j
)

.
In other words, at time t, the energy of E is completely concentrated around
c(t), and Im H describes the shape of the field.

Plugging E(x, t) into Maxwell’s equation (see [3, 8, 9, 10] for details) yields
the following conditions on θ: φ0 is constant, c is a geodesic with respect to a
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suitable Riemannian geometry depending on the media (see below), and pi(t)
are given by equation (3). Furthermore, if Λ(t) = (Γm

ij pm)ij , then

G(t) = Gij(t)dxi ⊗ dxj
∣

∣

c(t)
, Gij = (H − Λ)ij

is a solution to the complex tensor Riccati equation [3, 11]. Thus Im G = Im H
determines how a Gaussian beam decays in different directions from c(t). If we
are in isotropic media with permittivity ε and permeability µ, then Gaussian
beams propagate along geodesics of the scaled Euclidean metric [3]

g =
1

εµ
δijdxi ⊗ dxj .

One can also derive equations for the vector part E0 in E, and these are studied
in [9].

2.2 Phase front surface

For a fixed t ∈ I , let us define the phase front surface,

Ft = {x ∈ M : Re θ(x, t) = Re θ(c(t), t)}.

(In the proof of Proposition 2.2 we show that Ft is a surface.) On Ft, Re θ
is constant, that is, exp(iP θ) does not oscillate. Thus all oscillations happen
through Ft. For example, for a plane wave, Ft would be sheets orthogonal to
the direction of propagation. The next two propositions give some geometric
information about Ft. Proposition 2.1 is proved in [1] for real phase functions.

Proposition 2.1. Phase front surface Ft is orthogonal to ċ(t) with respect to
g.

Proof. Let u ∈ Tc(t)Ft. It follows that u = dγi

ds (0) ∂
∂xi

∣

∣

∣

c(t)
for some curve

γ : (−ε, ε) → M such that γ(0) = c(t) and s 7→ Re θ(γ(s), t) is constant. Since
pi(t) = ∂θ

∂xi (c(t), t), equation (3) implies that

g(u, ċ) =
dθ(γ(s), t)

ds

∣

∣

∣

s=0
,

and the proposition follows since g(u, ċ) is real.

Proposition 2.2. Let F̂t be the representation of the phase front in local coordi-
nates equipped with the Euclidean inner product. Then the Gaussian curvature
K and the mean curvature S of F̂t at c(t) are

K =
p · adj(Re H) · pT

‖p‖4
0

,

S = −p · Re(H − trace(H)I) · pT

2‖p‖3
0

,
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where p is the Euclidean vector p = (p1, p2, p3), ‖ · ‖0 is the Euclidean norm,
and adj is the adjugate of a matrix. Furthermore, p is a unit normal to F̂t at
c(t), and K and S are calculated with respect to this orientation for Ft.

Proof. Let us first calculate the principal curvatures κ1, κ2 of F̂t at c(t). Let
f(x) = Re θ(x, t) − Re θ(c(t), t). Then (∇f)(c(t)) = p(t), and (Hess f)(c(t)) =
Re H(t). Since p(t) 6= 0, Ft is a surface. Next, we employ a result from [20, p.
204]: If s1, s2 are the two roots to the 4 × 4 determinant equation

det

(

Re H − sI pT

p 0

)

= 0,

then κi = ‖p‖−1
0 si. (Here we have taken into account that in [20], the shape

operator is defined with opposite sign.) Using computer algebra, we find that
si are solutions to As2 + Bs + C = 0, where

A = −‖p‖2
0,

B = −p · Re(H − trace(H)I) · pT ,

C = −p · adj(Re H) · pT .

Then, by Viete’s formulas, s1s2 = C/A and s1 + s2 = −B/A, and the result
follows since K = κ1κ2 and S = 1

2 (κ1 + κ2).

2.3 Solving the Riccati equation

Assuming that G0 is symmetric and has positive definite imaginary part, one
can show that equation (1) is well posed. A solution G(t) exists for all t where
c is defined, and such a solution is unique. In addition, for all t the solution
G(t) is symmetric, and its imaginary part is positive definite. In other words,
if G represents a Gaussian beam at one t, it will be a Gaussian beam for all t
[3, 11].

Let us next outline the standard way to solve equation (1). Namely, how
to reduce it into a linear system. For simplicity, let us assume that we can
cover geodesic c with some local coordinates, whence we can define matrices
C = (Cij)ij , G = (Gij)ij , R = (Rij)ij , N = (N j

i ◦ ċ)ij all depending on t.
Let us point out that matrices C, G, R are symmetric (see Section 3.1 or [3]).
Equation (1) is then equivalent to the matrix equation [3, 11]

G′ − NG − GNT + GCG − R = 0. (4)

Let Y, Z be the solution to the linear system
(

Y
Z

)

′

=

(

0 I
−I 0

) (

−R −N
−NT C

) (

Y
Z

)

, (5)

Y (0) = I, Z(0) = G0.

Using the assumptions on G0, one can show that Y is invertible for all t. Further-
more, G = ZY −1 is the unique solution to equation (4), and so G, interpreted
as a 2-tensor is a solution to equation (1).

The next lemma shows that G and Z are invertible for all t.
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Lemma 2.3. A symmetric complex matrix with positive definite imaginary part
is invertible.

Proof. Let A, B be real symmetric matrices, such that B is positive definite.
If det(A + iB) = 0, then −i ∈ σ(B−1A) (the spectrum of B−1A). Since B−1

is positive definite, it has a symmetric square root, whence −i ∈ σ(B−1A) =

σ(
√

B−1A
√

B−1). This is a contradiction since
√

B−1A
√

B−1 is symmetric.

In the lemma below, the first equation states that Im G is determined by Y
alone.

Proposition 2.4. Suppose Y, Z are solutions to equation (5). Then

Im G = (Y −1)∗ Im(G0) Y −1,

Im(G−1) = −(Z−1)∗ Im(G0) Z−1,

where A∗ is the conjugate transpose of a matrix A.

Proof. As R and C are symmetric, equation (4) implies that

d

dt

((

Y
Z

)

∗
(

0 I
−I 0

) (

Y
Z

))

= 0,

so Y ∗Z − Z∗Y = G0 − G∗

0. Since G is symmetric,

Im G =
1

2i
(G − G∗)

=
1

2i
(Y −1)∗(Y ∗Z − Z∗Y )Y −1

=
1

2i
(Y −1)∗(G0 − G∗

0)Y
−1.

In particular, Im G0 = 1
2i (G0 − G∗

0), and the first claim follows. The second
claim follows similarly since G−1 is symmetric.

3 Fermi coordinates

Next we construct coordinates around a geodesic such that on the geodesic, the
metric tensor is Euclidean and all Christoffel symbols vanish. More generally,
one can find local coordinates around any curve such that the Christoffel symbols
vanish. Original references to this result by Fermi (1922) and Levi-Civita (1925−
26) are given in [5, p. 92].

In Section 3.1 we show that in Fermi coordinates, N = 0, and C is constant.
This will considerably simplify equation (4).

Theorem 3.1 (Fermi coordinates). Suppose M is a Riemannian n-manifold,
n ≥ 2, and c : J → M is a geodesic parametrized with respect to pathlength
that does not intersect itself. Furthermore, suppose c(J) is contained in one
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coordinate chart, and I is an open bounded interval satisfying I ⊂ J . Then
there exist local coordinates (x̃1, x̃2, . . . , x̃n) = (t, µ1, . . . , µn−1) that cover c(I),
and for t ∈ I,

(t, µ = 0) represents c(t), (6)

ċ(t) =
∂

∂t

∣

∣

∣

c(t)
, (7)

g̃ij(t) = δij , (8)

∂g̃ij

∂x̃k
(t) = 0, (9)

Γ̃i
jk(t) = 0. (10)

Coordinates t, µi as in Proposition 3.1 are called Fermi coordinates. Since the
first Fermi coordinate is in a special position, we shall use an adapted Einstein
summation convention: for Roman letters the summation range is 1, . . . , n, and
for Greek letters the range is 2, . . . , n.

One way to prove Theorem 3.1 is to construct coordinates (t, µ) such that
for constant (t, µ), curves s 7→ (t, sµ) represent geodesics [15]. The disadvan-
tage, however, with this construction is that it gives the coordinates in a rather
implicit form. The proof below is less geometric, but the coordinates are given
explicitly by equation (11). This expression will be needed in Section 4 and in
the proof of Theorem 4.5.

Proof of Theorem 3.1. Let xi be coordinates that cover c(J). For some t0 ∈ I ,
let vectors P2(t0), . . . , Pn(t0) be such that {ċ(t0), P2(t0), . . . , Pn(t0)} form an
orthonormal basis. For a general t ∈ J , let Pα(t) be the the parallel transport
of Pα(t0) along c to c(t). In other words,

Pα(t) = P i
α(t)

∂

∂xi

∣

∣

∣

c(t)
, α = 2, . . . , n,

where coefficients P i
α(t) are solutions to ordinary differential equations

Ṗ i
α + N i

s(t)P
s
α = 0.

For x̃i = (t, µ2, . . . , µn) ∈ J × Rn−1, let us define a map x̃ 7→ x(x̃) by

xi(x̃) = ci(t) − P i
α(t)µα − 1

2
Qi

αβ(t)µαµβ , (11)

Qi
αβ = Γi

abP
a
αP b

β .

Let Br be the Euclidean open ball in R
n−1 with center 0 and radius r > 0. For

some r > 0, x(I × Br) is completely contained in xi-coordinates. (Proof: Let
U be the chart for the xi coordinates. Suppose that for each l = 1, 2, . . ., there
exists an yl ∈ x(I × B1/l) such that yl /∈ U . On a subsequence, yl → c(a) for

some a ∈ I . This contradicts yl /∈ U since c(a) ∈ c(I) ⊂ c(J) ⊂ U , and U is
open.)
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The rest of the proof is divided into two steps. First we show that x̃i-
coordinates are coordinates. Thereafter we show that the coordinates satisfy the
sought conditions. Step 1. The parallel transport preserves the inner product
between two vectors. Thus {ċ(t), P2(t), . . . , Pn(t)} are orthonormal for all t ∈ J
and, in particular, linearly independent. Since

∂xi

∂t
(t, µ) = ċi + N i

s(t)P
s
αµα − 1

2
Q̇i

αβµαµβ ,

∂xi

∂µα
(t, µ) = −P i

α − Qi
αβµβ , (12)

the Jacobian of x̃ 7→ x(x̃) is pointwise invertible on I × {0}. It follows that
there exists an open set X ⊂ J × Br such that x : X → x(X) is locally a
diffeomorphism. Lemma 3.2 implies that for some r > 0, x : I ×Br → x(I ×Br)
is a diffeomorphism.

Step 2. Equations (6) and (7) follow from equation (11). As {ċ(t), P2(t),. . .,
Pn(t)} is orthonormal, we have

gij(t)P
i
αP j

β = δαβ ,

gij(t)P
i
αċj = 0,

gij(t)ċ
iċj = 1.

Equation (8) now follows from transformation rules g̃ij = ∂xa

∂x̃i
∂xb

∂x̃j gab, and equa-
tion (10) follows from transformation rules

Γ̃ijk =
∂xa

∂x̃i

(

∂2xb

∂x̃j ∂x̃k
gab +

∂xb

∂x̃j

∂xc

∂x̃k
Γabc

)

.

Here it suffices to show that the parenthesis vanishes for all j, k. Equation (9)
follows from the identity

∂gij

∂xk
= Γijk + Γjik . (13)

Lemma 3.2. Suppose X is open in Rn, X is compact, f : X → f(X) is contin-
uous, and f : X → f(X) is smooth and locally a diffeomorphism. Furthermore,
suppose S ⊂ X is closed and f : S → f(S) is a bijection. Then there exists an
open set W in X such that S ⊂ W ⊂ X, and f : W → f(W ) is a diffeomor-
phism.

Proof. (Following [19].) Let

C = {(x, y) ∈ X × X : f(x) = f(y), x 6= y}.

Then C is closed: If (xn, yn) is a sequence in C converging to (x, y) ∈ R
2n,

then f(x) = lim f(xn) = lim f(yn) = f(y). Also, if x = y, then there exists a
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neighbourhood B 3 x where f is a bijection. For some n, xn, yn ∈ B whence
f(xn) = f(yn) and xn = yn. Let d(x, S) be the distance from x to the set S
(see [14]), and let δ : C → R be the function

δ(x, y) = d(x, S) + d(y, S), (x, y) ∈ C.

As X is compact, C is compact, and as δ is continuous, δ has a minimum m > 0,
so that δ ≥ m on C. A suitable set is W = {x ∈ X : d(x, S) < m/2}.

3.1 Curvature

In Fermi coordinates, the Riemann curvature tensor takes the form

R̃m
ijk(t, µ) =

1

2

(

∂2g̃mk

∂x̃i ∂x̃j
− ∂2g̃ik

∂x̃m ∂x̃j
+

∂2g̃ij

∂x̃m ∂x̃k
− ∂2g̃mj

∂x̃i ∂x̃k

)

. (14)

This follows by inserting Γ̃m
ik = g̃msΓ̃sik into equation (2), differentiating, using

g̃ij = δij , Γ̃i
jk = 0, and the definition of Γijk . (At the expansion point in normal

coordinates, the Riemann curvature tensor satisfies the same formula. See [7,
p. 130])

In Fermi coordinates, tensors C and R have matrix representations

C̃ = diag(0, 1, 1), (15)

R̃ = diag(0, R), (16)

where R : I → R2×2 is a 2× 2 symmetric matrix. The latter claim follows since
R̃1i = R̃i1 = 0 and R̃ij = R̃1

ij1, as can be seen from equation (14). Furthermore,

as Γ̃i
jk = 0 we have Ñ i

j = 0.

4 Gaussian beams in Fermi coordinates

Definition 1 (Surface St). For a fixed t, let St be the Fermi coordinate surface
t = constant passing through c(t).

On St, a second order approximation of θ is

θ(x(t, µ), t) ≈ φ0 +
1

2
GjkP j

αµαP k
β µβ

= φ0 +
1

2
G̃αβ(t)µαµβ .

This gives a physical interpretation of tensor G and surface St. Namely, on St

a Gaussian beam decays approximately as exp(−P
2 Im G̃αβµαµβ).
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4.1 Decomposition of the Riccati equation

For matrices G̃, C̃, R̃ representing tensors G, C, R in Fermi coordinates, equation
(4) reads

G̃′ + G̃C̃G̃ − R̃ = 0. (17)

In other words, when we formulate the Riccati equation in Fermi coordinates,
two terms vanish, and C̃ becomes a constant matrix. In addition, since matrices
C̃, R̃ are non-zero only in their lower 2 × 2 blocks, it turns out that equation
(17) is only a 2 × 2 Riccati equation (equation (20)). Let us next make this
precise.

In view of equations (15)-(16), let us also partition G̃ and G̃0 as

G̃ =

(

λ uT

u G

)

, G̃0 =

(

λ0 uT
0

u0 G0,

)

,

where λ : I → C, u : I → C2×1, and G : I → C2×2 are functions, and λ0 ∈
C, u0 ∈ C2×1, G0 ∈ C2×2 are initial values. That Im G̃0 is positive definite
means in terms of λ0, u0, G that

Im λ0 > Im uT
0 (Im G0)

−1 Im u0, Im G0 positive definite.

This follows using a Shur complement on Im G̃ and the fact: if S is invertible,
then A is positive definite if and only if ST AS is positive definite.

With above notation, equation (17) decomposes into three differential equa-
tions

λ′ = −uT u, (18)

u′ = −G u, (19)

G
′ + G

2 − R = 0, (20)

with initial values λ(0) = λ0, u(0) = u0, G (0) = G0. If we write G = Gr + iGi,
where Gr, Gi are real, then equation (20) reads

G
′

r + G
2
r − R = G

2
i ,

G
′

i + GrGi + GiGr = 0.

Physically, Im λ describes how rapidly the Gaussian beam decays in the
direction of propagation, and Im G describes its decay in the transversal plane.
If Im u = 0, the decay of the Gaussian beam is determined by an ellipsoid
aligned with one axis along ċ. Equation (20) shows that we can solve G , that is
G̃αβ , without solving u or λ.

Proposition 4.1. Let G̃ be a solution to equation (17) decomposed as above.

1. Pointwise u = 0 if and only if ċ = (1, 0, 0) is an eigenvector for G̃. In this
case, λ is the eigenvalue corresponding to ċ.

12



2. If u0 = 0, then u is zero for all t, and λ(t) = λ0 is constant.

Proof. Claim (i) is elementary. Claim (ii) follows by solution formula for equa-
tions (19).

Let us next give a coordinate invariant formulation of projection G 7→ G .
For this purpose, let Π = Πi

j
∂

∂xi ⊗ dxj be the tensor determined by coefficients

Πj
i = giaCaj

= δj
i − piċ

j .

Then generally Π ◦ Π = Π,

v = Π(v) + g(ċ, v)ċ, v ∈ Tc(t)M,

and kerΠ = span(ċ). Thus Π is the projection operator mapping Tc(t)M onto
the orthogonal complement of ċ(t). For a 2-tensor B = Bijdxi ⊗ dxj , let
ΠBΠT = Πa

i BabΠ
b
jdxi ⊗ dxj whence the matrix representing ΠBΠT in Fermi

coordinates is Π̃B̃Π̃T , where Π̃ = (Π̃j
i )ij = (C̃ij)ij . For example, the matrix

representing ΠGΠT in Fermi coordinates is

Π̃G̃Π̃T = diag(0, G ).

Proposition 4.2 (Riccati equation in transversal plane). Let G0 be a
symmetric initial value with positive definite imaginary part. If tensor G is a
solution to equation (1) with initial value G0, then

F = ΠGΠT

is also a solution to equation (1), but with initial value ΠG0Π
T . Conversely,

if G and F are solutions from initial values G0 and ΠG0Π
T , respectively, then

F = ΠGΠT .

Proof. Since equation (1) is a tensor equation, it suffices to prove the claim in
Fermi coordinates. Thus, by assumption G̃ solves equation (17) with G̃(0) =
G̃0. Then G satisfies equation (20) with G (0) = G0. If F = ΠGΠT , then
F0 = ΠG0Π

T , and F̃ = diag(0, G ) satisfies equation (17). For the second claim,
let us first note that in Fermi coordinates, F̃ = diag(0, F ) for some 2 × 2
matrix F . This follows from equations (18)-(19), and their solution formulas.
Let C̃G̃C̃ = diag(0, G ). Then F and G share the same initial value, which is
symmetric and has positive definite imaginary part. Since, in addition, F and
G both solve equation (20), we have F = G . This gives F̃ = diag(0, F ) =
diag(0, G ) = C̃G̃C̃ .

4.2 Shape operator of surfaces Ft and St

Next we calculate shape operators of surfaces Ft and St. This will be done using
Lemma 4.3 and Lemma 4.4. To formulate these lemmas, we need the Legendre
transformation ] : T ∗M → TM defined as ] : αidxi 7→ gijαi

∂
∂xj . Let us also

write α] = ](α).
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Lemma 4.3 (Shape operator for an equipotential surface). Let p ∈ M .
Suppose f : M → R is a smooth function with dfp 6= 0, whence

S = {x ∈ M : f(x) = f(p)}

is a hypersurface passing trough p. Suppose further that g((df)], (df)]) = 1 at p,
and S is oriented with a unit normal n such that n = df ] at p. Then the shape
operator of S at p equals

L(v) = π ◦ ] ◦Dv(df), v ∈ TpS,

where π : TpM → TpS is the projection π(v) = v − g(v, n)n for v ∈ TpM .

Proof. Suppose E ∈ X (M) is vector field

E(x) = (df)](x), x ∈ M,

whence g(E, E) = 1 at p ∈ M , and n̂ = E/
√

g(E, E) is an extension of a
correctly oriented unit normal on S. Suppose v ∈ TpM . Then Dv(fX) =
v(f)X + fDv(X) for X ∈ X (M), and Dv(α

]) = ] ◦ Dv(α) for α ∈ Ω1(M).
These identities together with π ◦L = L imply the result.

Lemma 4.4 (Shape operator in Fermi coordinates). Suppose f and S are
as in the previous lemma, c is a geodesic parametrized with respect to pathlength
such that ċ(t) = (df)](p), and (s, µ) are Fermi coordinates around c. Then the
shape operator of S at c(t) is

L(v) =

3
∑

α,β=2

ṽα ∂2f

∂µα ∂µβ
(p)

∂

∂µβ
, v ∈ Tp(S).

Theorem 4.5 (Shape operator of surface Ft). Let phase front Ft be oriented
with unit normal n such that nc(t) = ċ(t). Then the shape operator of Ft at c(t)

L : Tc(t)Ft → Tc(t)Ft

is given by

L(v) = vi(Π Re GΠT )ijg
jk ∂

∂xk
, v ∈ Tc(t)Ft,

or in Fermi coordinates,

L(v) =

3
∑

α,β=2

ṽα Re G̃αβ
∂

∂µβ
, v ∈ Tc(t)Ft.

Proof. We only need to prove the claim in Fermi coordinates. Let us fix t,
whence Ft = {x ∈ M : f(x) = f(c(t))} for f(x) = Re θ(x, t). Since (df)](c(t)) =
ċ(t), Lemma 4.4 implies that

L(v) =
3

∑

α,β=2

ṽα ∂2f

∂µα ∂µβ

∂

∂µβ
, v ∈ Tc(t)Ft.
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By the chain rule we have ∂2f
∂µα ∂µβ = ∂2f

∂xi ∂xj
∂xi

∂µα
∂xj

∂µβ + ∂f
∂xi

∂2xi

∂µα ∂µβ . Evaluating

at µ = 0 and using equation (12) yields ∂2f
∂µα ∂µβ (t, 0) = Re G̃αβ(t).

In the Euclidean inner product, the shape operator vanishes on hyperplanes.
Intuitively this means that the Euclidean inner product sees no shape on a
hyperplane. The next proposition gives an analogous result for g and St.

Proposition 4.6 (Shape operator of surface St). The curve c is orthogonal
to St, and the shape operator on St (with respect to g) is identically zero at c(t).

Proof. The first claim follows since Tc(t)St = span{ ∂
∂µ2 , ∂

∂µ3 }. The second claim

follows from Lemma 4.4 as St = {(s, µ) : s − t = 0}.

Let us recall Gauss’ lemma in Riemannian geometry [1, 19]. It states that
if B is a geodesic ball around a point p, then geodesics from p will intersect
the boundary of B orthogonally. In the setting of Gaussian beams, a geodesic
ball around a point represents the area of influence. In time t, no Gaussian
beam can propagate outside a geodesic ball of radius t. Proposition 2.1 and 4.6
state that for small t, surfaces Ft and St are tangential to the geodesic sphere
of radius t.

4.3 Linear equations for Y and Z

In Fermi coordinates, equations (5) takes the simple form

Ỹ ′ = C̃Z̃,

Z̃ ′ = R̃Ỹ ,

Ỹ (0) = I, Z̃(0) = G̃0.

Since C̃ is constant, this system can also be written as a second order ordinary
differential equation

Ỹ ′′ = R̃Ỹ ,

Ỹ ′(0) = C̃G̃0,

Ỹ (0) = I.

Structurally, equation Ỹ ′′ = R̃Ỹ has the form of a Jacobi equation [7]. However,
this reduction only seems to be possible in Fermi coordinates. A more general
result in this direction can be found in [4].

5 Gaussian beams in Euclidean geometry

Let us consider the case when g is Euclidean, that is, g = δijdxi ⊗ dxj , and the
geodesic is t 7→ (t, 0, 0). Then Fermi coordinates (s, µ) coincide with Euclidean
coordinates; s = x1, µ2 = x2, and µ3 = x3.
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5.1 Geometry of surface Ft

Let us study the shape of Ft for t = 0. For simplicity, let us assume that
Re G1i = 0 for all i, c(t) = 0, and θ is a second order polynomial in z. The
equation for Ft then reads

s = −1

2
Re Gαβµαµβ .

If we assume that Re G11 is non-zero, then one obtains a second order equation
for t. Of the two solutions, one must be excluded as it does not pass through
c(t), and if one approximates

√
1 + x = 1 + x/2 in the other, it will coincide

with the above solution. Figure 1 shows how Ft depends on the definiteness of
Re G .

Figure 1: Phase front Ft in cases Re G = 0, Re G positive definite, Re G semi-
definite, and Re G negative definite. The arrow shows direction of propagation.

5.2 Explicit solution to G

In Euclidean geometry, R = 0, and the solution to equation (17) is

G(t) = G0(I + tCG0)
−1, C = diag(0, 1, 1),

or, in partitioned form,

λ(t) = uT
0 G

−1
0 (I + G0t)

−1u0 + k,

u(t) = (I + G0t)
−1u0,

G (t) = G0(I + G0t)
−1,

where
k = λ0 − uT

0 G
−1
0 u0 = det G

−1
0 det G0.

The expressions for G and G can be derived using the standard solution method
for a matrix Riccati equation as outlined in Section 2.3. However, it is maybe

easiest to just verify these by direct substitution using matrix identity dA−1

dt =
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−A−1 dA
dt A−1, and the fact that A and (I + A)−1 commute. Inverse (I + G0t)

−1

exists by Lemma 2.3, and (I+tCG0)
−1 exists since det(I+tCG0) = det(I+G0t).

Let J =

(

0 1
−1 0

)

. If B is an invertible 2 × 2 symmetric matrix, then B−1 =

−1
detB JBJ . Thus

(I + G0t)
−1 =

I − JG0Jt

det(I − JG0Jt)
.

From this expression it follows that λ(t), u(t), and G (t) decay as 1/t. Thus, if
I = R, then

lim
t→∞

λ(t) = det G
−1
0 det G0, lim

t→∞

u(t) = 0, lim
t→∞

G (t) = 0,

In particular, at infinity the Gaussian beam is infinitely wide (G = 0)

Example 5.1 (Eigenvalues of Re G and Im G ). Let us study solutions from
initial values of the form

G0 = diag(a + i, c + i), (21)

where a, c are real eigenvalues of ReG . In this case, the Riccati equation de-
couples into two scalar equations. Figure 2 shows the eigenvalues of Re G and
Im G for six values for a and c. The signum-type function in the plots will be
studied in Section 5.3.

In the plots we can see three phenomena. First, in all plots the magnitudes
of the eigenvalues tend to zero. In other words, for large t, the phase front will
resemble more and more a plane. Secondly, even if initial value Re G0 is semi-
definite or zero, the solution Re G always tends to a positive definite matrix.
This suggests that the solution is unstable if ReG is not positive definite. This
is also physically reasonable. In free space, the phase surface should look like a
sphere, not as a hyperbola (see Figure 1). Lastly, eigenvalues of Re G and Im G

are coupled.

5.3 When is the phase front within the area of influence?

Let us write the general initial value G0 as

G0 =

(

A B
B C

)

=

(

a b
b c

)

+ i

(

α β
β γ

)

,

where A, B, C are complex numbers, and a, b, c, α, β, γ are real. Computer al-
gebra gives the following expressions for K and S,

K(t) =
C4t

2 + 1
2C3t + C0

C4t4 + C3t3 + C2t2 + C1t + 1
,

S(t) =
1

2

2C4t
3 + 3

2C3t
2 + C2t + 1

2C1

C4t4 + C3t3 + C2t2 + C1t + 1
,
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Figure 2: Eigenvalues of Re G (solid lines) and Im G (dashed lines) for t =
0, . . . , 5 from initial value (21). The signum-type functions is described in Sec-
tion 5.3.

where

C0 = det ReG0,

C1 = 2 traceRe G0,

C2 = (trace (Re G0))
2

+ 2 detRe G0 + (trace (Im G0))
2 − 2 det Im G0,

C3 = 2
(

c|A|2 + a|C|2 − Re
(

B2 trace(G ∗

0 )
))

,

C4 = | det G0|2,

and M∗ is the complex conjugate of a matrix M . These expressions can be
derived either using Proposition 2.2, or from the eigenvalues of G and using
Theorem 4.5. It follows that K decays as 1/t2, and S decays as 1/t. Thus
for large t the Gaussian curvature of Ft (at c(t)) approaches 1/t2 which is the
curvature for a sphere of radius t. The sphere with center c(0) and radius t
represents the area of influence; in time t, a signal can propagate at most a
distance of t units. As the phase front describes how the field propagates, it
would be natural to assume that near c(t), phase front Ft is contained inside
this sphere. In other words, it would be natural to assume that Gaussian beams
should satisfy

K(t) >
1

t2
, S(t) > 0. (22)

The first condition is only reasonable for large t. The latter condition assures
that Re G is positive definite, so that phase front Ft is bending in the right
direction (see Figure 1). The signum-type function plotted in Figure 2 indicates
when condition (22) holds. When the function is positive the condition holds
and when negative the condition does not hold. Let us point out that G(t)
in a = c = 1 is identical to G(t + 1) in a = c = −1. However, condition
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K(t) > 1/t2 is not translationally invariant. Therefore the signum functions
do not coincide. Schematically this condition is illustrated in Figure 3. In the
left figure, condition (22) holds. In other words, phase fronts are contained
within the area of influence. The right figure shows phase fronts where Re G

are positive definite, but K(t) < 1
t2 .

Figure 3: A 2D illustration of phase fronts in cases K(t) > 1/t2 (left) and
K(t) < 1/t2 (right).

For large t, condition (22) holds if and only if

lim
t→∞

1

2
C3t

3 + (C2 − C0)t
2 + C1t + 1 = −∞.

For example, if C3 < 0, the condition holds for large t. Suppose B = 0. Then
matrix Riccati equation (20) decomposes into two scalar equations, and in this
case, condition C3 < 0 simplifies into c|A|2 +a|C|2 < 0. It follows that in Figure
2, condition (22) will be satisfied only in cases (a, c) = (−1, 0) and (−1,−1). In
addition, by slightly perturbing initial values (−1, 1) and (0, 0), these too satisfy
the condition.
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