Geometry and Electromagnetic Gaussian beams

Matias Dahl Institute of Mathematics, Helsinki University of Technology

Instructor: Kirsi Peltonen

ACOMEN 2008 — 26.5.2008, Liège

Introduction

• A Gaussian beam is an asymptotic solution to Maxwell's equations that is always concentrated in space.

- A Gaussian beam propagates along a curve
- Motivation: Fast calculation of qualitative features of solutions to Maxwell's equations in time domain

Initial assumptions

- Everything is smooth
- M open set in \mathbb{R}^3 (or a 3-manifold)
- Media is anisotropic, non-homogeneous, no time or frequency dependence
- ε, μ real, symmetric, positive definite 3×3 -matrices.
- ε, μ simultaneously diagonalizable: For some orthogonal matrix R = R(x),

$$\varepsilon = R^{-1} \cdot \begin{pmatrix} \varepsilon_1 & & \\ & \varepsilon_2 & \\ & & \varepsilon_3 \end{pmatrix} \cdot R, \quad \mu = R^{-1} \cdot \begin{pmatrix} \mu_1 & & \\ & \mu_2 & \\ & & \mu_3 \end{pmatrix} \cdot R$$

Asymptotic solutions

Trial: $E(x,t) = \operatorname{Re}\{e^{iP\theta(x,t)}E_0(x,t)\}$

 $P \gg 0$ large constant, θ complex phase function, E_0 complex vector field.

• Interpretation:

$$(e^{iP\theta} = e^{iP\operatorname{Re}\theta} \cdot e^{-P\operatorname{Im}\theta})$$

- $-\operatorname{Re}\theta$ describes how E propagates
- $\operatorname{Im} \theta \geq 0$ describes shape of E
- E_0 describes polarization of E
- Plugging E into Maxwell's equations gives:
 - Hamilton-Jacobi equation for θ : $\frac{\partial \theta}{\partial t} = h(x, \nabla \theta)$. Here $h = h_{\pm}$ is a Hamiltonian function $h: T^*M \to \mathbb{R}$, which depend only on media.
 - Transport equation for E_0 .

Definition of Gaussian beam

Definition: An asymptotic solution $E = \operatorname{Re}\{e^{iP\theta}E_0\}$ is a **Gaussian beam** if there is a curve $c: I \to M$ such that

$$\theta(x,t) = \phi(t) + p(t) \cdot z + \frac{1}{2}z^T \cdot S(t) \cdot z + o(|z|^2),$$

$$z = z(x,t) = x - c(t)$$

 ϕ,p real, $\,S$ symmetric, $\,{\rm Im}\,S$ positive definite

Motivation:

$$\begin{aligned} |\exp(iP\theta(x,t))| &\approx \exp\left(-\frac{P}{2} z^T \cdot \operatorname{Im} S \cdot z\right) \\ &= \text{Gaussian bell curve with centre } c(t) \end{aligned}$$

Phase function for a Gaussian beam:

$$\theta(x,t) = \phi(t) + p(t) \cdot z + \frac{1}{2}z^T \cdot S(t) \cdot z + o(|z|^2),$$

- ϕ is constant
- (c, p) is a solution to **Hamilton's equations**

$$\frac{dc^{i}}{dt} = \frac{\partial h}{\partial \xi_{i}} \circ (c, p),$$
$$\frac{dp_{i}}{dt} = -\frac{\partial h}{\partial x^{i}} \circ (c, p).$$

• S is a solution to a **complex matrix Riccati equation**

$$\frac{dS}{dt} + BS + SB^T + SCS + D = 0.$$

Geometrization of Gaussian beams

Suppose ε, μ are simultaneously diagonalizable. Then:

Gaussian beams propagate using Riemannian geometry

$$\Leftrightarrow$$
 For some $i \neq j$, $\varepsilon_i \mu_j = \varepsilon_j \mu_i$

Examples of media where Gaussian beams propagate using Riemannian geometry:

- isotropic media: $\varepsilon = \varepsilon(x)I$, $\mu = \mu(x)I$,
- $\varepsilon = \rho \mu$ for a positive function $\rho > 0$

•
$$\mu = \mu_0(x)I$$
, $\varepsilon = R^{-1} \cdot \operatorname{diag}(\varepsilon_{\perp}, \varepsilon_{\perp}, \varepsilon_{\parallel}) \cdot R$.

Example

If $\varepsilon_2 \mu_3 = \varepsilon_3 \mu_2$, then Gaussian beams propagate along geodesics of Riemannian metrics

$$g_{+,ij}(x) = (R^{-1} \cdot \operatorname{diag} (\varepsilon_2 \mu_3, \varepsilon_1 \mu_3, \varepsilon_1 \mu_2) \cdot R)_{ij},$$

$$g_{-,ij}(x) = (R^{-1} \cdot \operatorname{diag} (\varepsilon_3 \mu_2, \varepsilon_3 \mu_1, \varepsilon_2 \mu_1) \cdot R)_{ij}.$$