Descending Maps Between Slashed Tangent Bundles

Matias Dahl

Helsinki University of Technology, Finland

joint work with

Ioan Bucataru

A.I. Cuza University, Romania

Workshop on Finsler geometry and its applications, Debrecen — May 2009

Problem

Suppose F is a diffeomorphism

$$F: TM \setminus \{0\} \rightarrow TM \setminus \{0\}.$$

Characterize those F that can be written as

$$F = D\phi|_{TM\setminus\{0\}}.$$

for a diffeomorphism $\phi: M \to M$.

When ϕ exists, one say that F descends.

Canonical involution

Definition: Let *M* be a manifold. Then the **canonical involution** is the diffeomorhism

$$\kappa \colon \mathit{TTM} \to \mathit{TTM}$$

that is locally given by

$$\kappa(x,y,X,Y) = (x,X,y,Y).$$

Note:

• κ^2 = identity.

First main theorem

Suppose F is a diffeomorphism

$$F: TM \setminus \{0\} \rightarrow TM \setminus \{0\}$$

and suppose that M is connected, simply connected, compact, dim $M \ge 2$.

Then the following are equivalent:

(i) There exists a diffeomorphism $\phi: M \to M$ such that

$$F = D\phi|_{TM\setminus\{0\}}.$$

(ii)
$$DF = \kappa \circ DF \circ \kappa$$

A related result

Theorem [Robbin-Weinstein-Lie]:

Let F be a diffeomorphism

$$F: T^*M \rightarrow T^*M$$
.

Then the following are equivalent:

- (i) $F = \phi^*$ for a diffeomorphism $\phi \colon M \to M$.
- (ii) $F^*\theta = \theta$.

Here:

- ϕ^* = pullback of ϕ , $\phi(x,\xi) = \left((\phi^{-1})^i(x), \frac{\partial (\phi^{-1})^i}{\partial x^a} \xi_i \right)$
- θ = canonical 1-form $\theta \in \Omega^1(T^*M)$, $\theta = \xi_i dx^i$

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial v^a}(x, y)Y^a\right),$$

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right).$$

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right).$$

• First components: $F_1(x, y) = F_1(x, X)$. Let ϕ be the unique map $\phi \colon M \to M$ determined by $\phi \circ \pi = \pi \circ F$. Locally $\phi(x) = F_1(x, y)$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right).$$

- First components: $F_1(x, y) = F_1(x, X)$. Let ϕ be the unique map $\phi \colon M \to M$ determined by $\phi \circ \pi = \pi \circ F$. Locally $\phi(x) = F_1(x, y)$.
- Second components: $F_2(x,y) = \frac{\partial \phi}{\partial x^a}(x)y^a$. Thus $F = D\phi|_{TM\setminus\{0\}}$.

Second main theorem: Suppose *F* is a diffeomorphism

$$F: TM \setminus \{0\} \rightarrow TM \setminus \{0\},$$

and M is connected, simply connected, compact, and dim $M \ge 2$. If M has two Riemann metrics g and \tilde{g} such that

(i) g has a trapping hypersurface $\Sigma \subset M$;

$$\forall p \in M \quad \forall y \in T_p M \setminus \{0\} \quad \exists T \in \mathbb{R} \text{ s.t. } \exp(Ty) \in \Sigma.$$

(ii) for all $p \in \Sigma$,

$$g(y,y) = \widetilde{g}(y,y)$$
 $y \in T_pM \setminus \{0\}$
 $S(y) = \widetilde{S}(y),$ $y \in T_pM \setminus \{0\}$
 $DF(\xi) = \xi,$ $\xi \in T(T_pM \setminus \{0\})$

(iii) If $J: I \to TM \setminus \{0\}$ is a Jacobi field for g then $F \circ J: I \to TM \setminus \{0\}$ is a Jacobi field for \widetilde{g} .

Then $F = D\phi|_{TM\setminus\{0\}}$ for a diffeomorphism $\phi \colon M \to M$ and ϕ is an isometry.

- 1. *F* preserves integral curves since:
 - every integral curve is a Jacobi field
 - ► F preserves Jacobi fields
 - $S = \widetilde{S}$ and DF = Id on Σ

- 1. *F* preserves integral curves since:
 - every integral curve is a Jacobi field
 - ► F preserves Jacobi fields
 - $S = \widetilde{S}$ and DF = Id on Σ
- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \widetilde{S}$ and DF = Id on Σ
- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \widetilde{S}$ and DF = Id on Σ
- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - ► F preserves Jacobi fields
 - F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.
- 4. ϕ is totally gedesic since:
 - $F = D\phi|_{TM\setminus\{0\}}$ preserves integral curves

- 1. *F* preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - ▶ $S = \widetilde{S}$ and DF = Id on Σ
- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.
- 4. ϕ is totally gedesic since:
 - $F = D\phi|_{TM\setminus\{0\}}$ preserves integral curves
- 5. **Proposition:** Let M be a connected manifold with two Riemann metrics. If $\phi \colon M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.