Descending Maps Between Slashed Tangent Bundles

Matias Dahl

University College London, UK

joint work with

Ioan Bucataru

A.I. Cuza University, Romania

Inverse Days 2009, Lousto

Mathematical setting

- *M* is a manifold
- TM is the tangent bundle
- $TM \setminus \{0\}$ is the slashed tangent bundle

The Problem

• Suppose F is a diffeomorphism

$$F: TM \setminus \{0\} \to TM \setminus \{0\}.$$

Characterize those F that can be written as

$$F = D\phi|_{TM \setminus \{0\}}.$$

for a diffeomorphism $\phi: M \to M$.

When ϕ exists, one say that *F* descends.

Mathematical setting

- *M* is a manifold
- TM is the tangent bundle
- $TM \setminus \{0\}$ is the slashed tangent bundle

The Problem

• Suppose F is a diffeomorphism

$$F: TM \setminus \{0\} \to TM \setminus \{0\}.$$

Characterize those F that can be written as

$$F = D\phi|_{TM \setminus \{0\}}.$$

for a diffeomorphism $\phi: M \to M$.

When ϕ exists, one say that *F* descends.

Note: Uniqueness result for inverse problems in anisotropic media
existence result of isometry

Canonical involution in the second tangent bundle

Definition: Let *M* be a manifold. Then the **canonical involution** is the diffeomorphism

 κ : TTM \rightarrow TTM

that is locally given by

$$\kappa(\mathbf{X},\mathbf{Y},\mathbf{X},\mathbf{Y}) = (\mathbf{X},\mathbf{X},\mathbf{Y},\mathbf{Y}).$$

Note:

• $\kappa^2 = \text{identity.}$

First main theorem:

If M is a manifold and F is a diffeomorphism

$$F: TM \setminus \{0\} \rightarrow TM \setminus \{0\},$$

then the following are equivalent:

(i) There exists a diffeomorphism $\phi: M \to M$ such that

$$F = D\phi|_{TM\setminus\{0\}}.$$

(ii) $DF = \kappa \circ DF \circ \kappa$

A related result

Theorem [Robbin-Weinstein-Lie]:

Let F be a diffeomorphism

$$F: T^*M \rightarrow T^*M.$$

Then the following are equivalent:

(i)
$$F = \phi^*$$
 for a diffeomorphism $\phi \colon M \to M$.
(ii) $F^*\theta = \theta$.

Here:

•
$$\phi^*$$
 = pullback of ϕ , $\phi(x,\xi) = \left((\phi^{-1})^i(x), \frac{\partial (\phi^{-1})^i}{\partial x^a} \xi_i \right)$

• θ = canonical 1-form $\theta \in \Omega^1(T^*M), \theta = \xi_i dx^i$

Suppose: $DF = \kappa \circ DF \circ \kappa$. **Claim:** There exists a map $\phi \colon M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$

$$\begin{split} \kappa \circ DF \circ \kappa(x, y, X, Y) \\ &= \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right. \\ &\left. \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right). \end{split}$$

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right).$$

• First components: $F_1(x, y) = F_1(x, X)$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial v^a}(x, y)Y^a\right),$

$$\begin{split} \kappa \circ DF \circ \kappa(x, y, X, Y) \\ &= \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right. \\ &\left. \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right). \end{split}$$

First components: F₁(x, y) = F₁(x, X). Thus F₁(x, y) does not depend on y.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$

$$\begin{split} \kappa \circ DF \circ \kappa(x, y, X, Y) \\ &= \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right. \\ &\left. \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right). \end{split}$$

First components: F₁(x, y) = F₁(x, X). Thus F₁(x, y) does not depend on y. Set φ(x) = F₁(x, y).

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$. **Proof:** Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then DF(x, y, X, Y) $= \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a\right),$

$$\begin{split} \kappa \circ DF \circ \kappa(x, y, X, Y) \\ &= \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right. \\ &\left. \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a\right). \end{split}$$

- First components: F₁(x, y) = F₁(x, X). Thus F₁(x, y) does not depend on y. Set φ(x) = F₁(x, y).
- Second components: $F_2(x, y) = \frac{\partial \phi}{\partial x^a}(x)y^a$. Thus $F = D\phi|_{TM \setminus \{0\}}$.

Second main theorem:

Suppose *M* is a connected manifold with dim $M \ge 2$ and *F* is a diffeomorphism

 $F: TM \setminus \{0\} \rightarrow TM \setminus \{0\}.$

If *M* has two complete Riemann metrics g and \tilde{g} such that

- (i) g has a trapping hypersurface Σ ⊂ M ⇔ Every geodesic of g intersects Σ
- (iii) If $J: I \to TM \setminus \{0\}$ is a Jacobi field for g then $F \circ J: I \to TM \setminus \{0\}$ is a Jacobi field for \tilde{g} .

Then there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$ and ϕ is an isometry.

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields

-
$$\Gamma^i_{jk} = \widetilde{\Gamma}^i_{jk}$$
 and $DF = Id$ on Σ

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields

-
$$\Gamma^i_{jk} = \widetilde{\Gamma}^i_{jk}$$
 and $DF = \mathsf{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields

-
$$\Gamma^i_{jk} = \widetilde{\Gamma}^i_{jk}$$
 and $DF = Id$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM \setminus \{0\}}$.

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields

-
$$\Gamma^i_{jk} = \widetilde{\Gamma}^i_{jk}$$
 and $DF = Id$ on Σ

- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that
 - $F = D\phi|_{TM \setminus \{0\}}.$
- 4. ϕ is totally gedesic since:
 - $F = D\phi|_{TM \setminus \{0\}}$ preserves integral curves

- 1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields

-
$$\Gamma^i_{jk} = \widetilde{\Gamma}^i_{jk}$$
 and $DF = \mathsf{Id}$ on Σ

- 2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves
- 3. Thus there exists a diffeomorphism $\phi: M \to M$ such that
 - $F = D\phi|_{TM \setminus \{0\}}.$
- 4. ϕ is totally gedesic since:
 - $F = D\phi|_{TM \setminus \{0\}}$ preserves integral curves
- 5. **Proposition:** Let *M* be a connected manifold with two Riemann metrics. If $\phi: M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.