Descending Maps Between Slashed Tangent Bundles

Matias Dahl
University College London, UK

joint work with

Ioan Bucataru
A.I. Cuza University, Romania

Inverse Days 2009, Lousto

Mathematical setting

- M is a manifold
- $T M$ is the tangent bundle
- $T M \backslash\{0\}$ is the slashed tangent bundle

The Problem

- Suppose F is a diffeomorphism

$$
F: T M \backslash\{0\} \rightarrow T M \backslash\{0\} .
$$

Characterize those F that can be written as

$$
F=\left.D \phi\right|_{T M \backslash\{0\}} .
$$

for a diffeomorphism $\phi: M \rightarrow M$.
When ϕ exists, one say that F descends.

Mathematical setting

- M is a manifold
- TM is the tangent bundle
- $T M \backslash\{0\}$ is the slashed tangent bundle

The Problem

- Suppose F is a diffeomorphism

$$
F: T M \backslash\{0\} \rightarrow T M \backslash\{0\}
$$

Characterize those F that can be written as

$$
F=\left.D \phi\right|_{T M \backslash\{0\}} .
$$

for a diffeomorphism $\phi: M \rightarrow M$.
When ϕ exists, one say that F descends.

- Note: Uniqueness result for inverse problems in anisotropic media = existence result of isometry

Canonical involution in the second tangent bundle

Definition: Let M be a manifold. Then the canonical involution is the diffeomorphism

$$
\kappa: \text { TTM } \rightarrow \text { TTM }
$$

that is locally given by

$$
\kappa(x, y, X, Y)=(x, X, y, Y)
$$

Note:

- $\kappa^{2}=$ identity.

First main theorem:
If M is a manifold and F is a diffeomorphism

$$
F: T M \backslash\{0\} \rightarrow T M \backslash\{0\},
$$

then the following are equivalent:
(i) There exists a diffeomorphism $\phi: M \rightarrow M$ such that

$$
F=\left.D \phi\right|_{T M \backslash\{0\}} .
$$

(ii) $D F=\kappa \circ D F \circ \kappa$

A related result

Theorem [Robbin-Weinstein-Lie]:

Let F be a diffeomorphism

$$
F: T^{*} M \rightarrow T^{*} M .
$$

Then the following are equivalent:
(i) $F=\phi^{*}$ for a diffeomorphism $\phi: M \rightarrow M$.
(ii) $F^{*} \theta=\theta$.

Here:

- $\phi^{*}=$ pullback of $\phi, \phi(x, \xi)=\left(\left(\phi^{-1}\right)^{i}(x), \frac{\partial\left(\phi^{-1}\right)^{i}}{\partial x^{a}} \xi_{i}\right)$
- $\theta=\mathbf{c a n o n i c a l} 1$-form $\theta \in \Omega^{1}\left(T^{*} M\right), \theta=\xi_{i} d x^{i}$

Suppose: $D F=\kappa \circ D F \circ \kappa$.
Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M\{0\}}$.

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

$$
\begin{array}{r}
\kappa \circ D F \circ \kappa(x, y, X, Y) \\
=\left(F_{1}(x, X), \frac{\partial F_{1}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, X) Y^{a}, F_{2}(x, X),\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, X) Y^{a}\right) .
\end{array}
$$

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

$$
\begin{array}{r}
\kappa \circ D F \circ \kappa(x, y, X, Y) \\
=\left(F_{1}(x, X), \frac{\partial F_{1}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, X) Y^{a}, F_{2}(x, X),\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, X) Y^{a}\right) .
\end{array}
$$

- First components: $F_{1}(x, y)=F_{1}(x, X)$.

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

$$
\begin{array}{r}
\kappa \circ D F \circ \kappa(x, y, X, Y) \\
=\left(F_{1}(x, X), \frac{\partial F_{1}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, X) Y^{a}, F_{2}(x, X),\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, X) Y^{a}\right) .
\end{array}
$$

- First components: $F_{1}(x, y)=F_{1}(x, X)$. Thus $F_{1}(x, y)$ does not depend on y.

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

$$
\begin{array}{r}
\kappa \circ D F \circ \kappa(x, y, X, Y) \\
=\left(F_{1}(x, X), \frac{\partial F_{1}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, X) Y^{a}, F_{2}(x, X),\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, X) Y^{a}\right) .
\end{array}
$$

- First components: $F_{1}(x, y)=F_{1}(x, X)$. Thus $F_{1}(x, y)$ does not depend on y. Set $\phi(x)=F_{1}(x, y)$.

Suppose: $D F=\kappa \circ D F \circ \kappa$.

Claim: There exists a map $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
Proof: Let locally $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$. Then $D F(x, y, X, Y)$

$$
\begin{array}{r}
=\left(F_{1}(x, y), F_{2}(x, y), \frac{\partial F_{1}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, y) Y^{a}\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, y) X^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, y) Y^{a}\right)
\end{array}
$$

$$
\begin{array}{r}
\kappa \circ D F \circ \kappa(x, y, X, Y) \\
=\left(F_{1}(x, X), \frac{\partial F_{1}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{1}}{\partial y^{a}}(x, X) Y^{a}, F_{2}(x, X),\right. \\
\left.\frac{\partial F_{2}}{\partial x^{a}}(x, X) y^{a}+\frac{\partial F_{2}}{\partial y^{a}}(x, X) Y^{a}\right) .
\end{array}
$$

- First components: $F_{1}(x, y)=F_{1}(x, X)$. Thus $F_{1}(x, y)$ does not depend on y. Set $\phi(x)=F_{1}(x, y)$.
- Second components: $F_{2}(x, y)=\frac{\partial \phi}{\partial x^{a}}(x) y^{a}$. Thus $F=\left.D \phi\right|_{T M \backslash\{0\}}$.

Second main theorem:

Suppose M is a connected manifold with $\operatorname{dim} M \geq 2$ and F is a diffeomorphism

$$
F: T M \backslash\{0\} \rightarrow T M \backslash\{0\} .
$$

If M has two complete Riemann metrics g and \widetilde{g} such that
(i) g has a trapping hypersurface $\Sigma \subset M \Leftrightarrow$ Every geodesic of g intersects Σ
(ii) for all $p \in \Sigma$,

$$
\begin{aligned}
g_{i j}(p) & =\widetilde{g}_{i j}(p), & \Gamma_{j k}^{i}(p)=\widetilde{\Gamma}_{j k}^{i}(p), \\
D F(\xi) & =\xi, & \xi \in T\left(T_{p} M \backslash\{0\}\right)
\end{aligned}
$$

(iii) If $J: I \rightarrow T M \backslash\{0\}$ is a Jacobi field for g then $F \circ J: I \rightarrow T M \backslash\{0\}$ is a Jacobi field for \widetilde{g}.
Then there exists a diffeomorphism $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$ and ϕ is an isometry.

Addendum: Outline of proof:

1. F preserves integral curves since:

- every integral curve is a Jacobi field
- F preserves Jacobi fields
- $\Gamma_{j k}^{i}=\widetilde{\Gamma}_{j k}^{i}$ and $D F=\operatorname{ld}$ on Σ

Addendum: Outline of proof:

1. F preserves integral curves since:

- every integral curve is a Jacobi field
- F preserves Jacobi fields
- $\Gamma_{j k}^{i}=\widetilde{\Gamma}_{j k}^{i}$ and $D F=\operatorname{ld}$ on Σ

2. $D F=\kappa \circ D F \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves

Addendum: Outline of proof:

1. F preserves integral curves since:

- every integral curve is a Jacobi field
- F preserves Jacobi fields
- $\Gamma_{j k}^{i}=\widetilde{\Gamma}_{j k}^{i}$ and $D F=\operatorname{ld}$ on Σ

2. $D F=\kappa \circ D F \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.

Addendum: Outline of proof:

1. F preserves integral curves since:

- every integral curve is a Jacobi field
- F preserves Jacobi fields
- $\Gamma_{j k}^{i}=\widetilde{\Gamma}_{j k}^{i}$ and $D F=\operatorname{ld}$ on Σ

2. $D F=\kappa \circ D F \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
4. ϕ is totally gedesic since:

- $F=\left.D \phi\right|_{T M \backslash\{0\}}$ preserves integral curves

Addendum: Outline of proof:

1. F preserves integral curves since:

- every integral curve is a Jacobi field
- F preserves Jacobi fields
- $\Gamma_{j k}^{i}=\widetilde{\Gamma}_{j k}^{i}$ and $D F=\operatorname{ld}$ on Σ

2. $D F=\kappa \circ D F \circ \kappa$ since:

- F preserves Jacobi fields
- F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \rightarrow M$ such that $F=\left.D \phi\right|_{T M \backslash\{0\}}$.
4. ϕ is totally gedesic since:

- $F=\left.D \phi\right|_{T M \backslash\{0\}}$ preserves integral curves

5. Proposition: Let M be a connected manifold with two Riemann metrics. If $\phi: M \rightarrow M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.
