Electromagnetic media with two Lorentz null cones

Matias Dahl

Aalto University, Finland

Fourier Analysis and Pseudo-Differential Operators Helsinki — June 2012.

Problem statement

- Two descriptions of homogeneous anisotropic electromagnetic medium
- Analytic: Coefficients in Maxwell's equations.
- Geometric: Phase velocity of plane waves.
- How are these related?

Maxwell Equations

- Base space: \mathbb{R}^{4}
- Electromagnetic fields: $F, G \in \Omega^{2}\left(\mathbb{R}^{4}\right)$.
- Sourceless Maxwell's equations:

$$
\begin{aligned}
& d F=0 \\
& d G=0
\end{aligned}
$$

- Model for medium - Constitutive equation:

$$
G=\kappa(F)
$$

where $\kappa \in \Omega_{2}^{2}\left(\mathbb{R}^{4}\right)$ is an antisymmetric $\binom{2}{2}$-tensor with constant coefficients

$$
\kappa: \Omega^{2}\left(\mathbb{R}^{4}\right) \rightarrow \Omega^{2}\left(\mathbb{R}^{4}\right)
$$

- Non-dissipative medium: for all $u, v \in \Omega^{2}\left(\mathbb{R}^{4}\right)$,

$$
\kappa(u) \wedge v=u \wedge \kappa(v)
$$

Back to \mathbb{R}^{3}

- $\mathbb{R}^{4}=\mathbb{R} \times \mathbb{R}^{3}, \quad F=B+E \wedge d t, \quad G=D-H \wedge d t$.
- Sourceless Maxwell's equations:

$$
\begin{array}{rlrl}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t}, & \nabla \cdot \mathbf{D}=0 \\
\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}, & \nabla \cdot \mathbf{B}=0
\end{array}
$$

- Model for medium: $\binom{\mathbf{H}}{\mathbf{D}}=\left(\begin{array}{ll}C & B \\ A & D\end{array}\right) \cdot\binom{\mathbf{E}}{\mathbf{B}}$
- Non-dissipative: $A=A^{t}, B=B^{t}, C+D^{t}=0$. κ is determined by 21 real numbers.
- Poynting's theorem:

$$
\frac{d}{d t} \int_{U} \frac{1}{2}(E \wedge D+H \wedge B)=-\int_{\partial U} E \wedge H
$$

Characteristic polynomial I

- Plane wave solution:

$$
F=\operatorname{Re}\left\{e^{i \phi} A\right\}, \quad G=\operatorname{Re}\left\{e^{i \phi} B\right\}
$$

- $d G=0, G=\kappa(F)$ implies: $d \Phi \wedge B=0, \quad B=\kappa(A)$. Thus.

$$
(d \Phi \wedge \kappa)(A)=0
$$

This has a solution $A \neq 0$ if and only if $p(d \Phi)=0$ where p is the characteristic polynomial $p(\xi)=\mathscr{G}^{i j k l} \xi_{i} \xi_{j} \xi_{k} \xi_{l}$ for

$$
\mathscr{G}^{i j k l}=\kappa_{a b}^{p q} \kappa_{c d}^{r i} \kappa_{e f}^{s j} \varepsilon^{a b e k} \varepsilon^{c d f l} \varepsilon_{p q r s} .
$$

- $\left\{\xi \in T^{*} \mathbb{R}^{4}: p(\xi)=0\right\}$ is the Fresnel surface $F(\kappa)$.
- Obukhov, Fukui, Rubilar (2000).

Characteristic polynomial II

- Evolution eqs: $L^{(0)} \frac{\partial}{\partial x^{0}}\binom{\mathbf{E}}{\mathbf{B}}+\sum_{k=1}^{3} L^{(k)} \frac{\partial}{\partial x^{k}}\binom{\mathbf{E}}{\mathbf{B}}=0$.
- Coefficient matrices: $L^{(0)}, \ldots, L^{(3)} \in \mathbb{R}^{6 \times 6}$

$$
L^{(0)}=\left(\begin{array}{cc}
A & D \\
0 & \text { Id }
\end{array}\right), \quad L^{(k)}=\left(\begin{array}{cc}
\left(\varepsilon^{i j k}\right)_{i, j=1}^{3} & 0 \\
0 & \left(\varepsilon^{i j k}\right)_{i, j=1}^{3}
\end{array}\right)\left(\begin{array}{cc}
C & B \\
-\mathrm{Id} & 0
\end{array}\right) .
$$

- Then

$$
p(\xi)=\operatorname{det}\left(\xi_{0} L^{(0)}+\sum_{k=1}^{3} \xi_{k} L^{(k)}\right) / \xi_{0}^{2} .
$$

- Schuller, Witte, Wohlfarth (2010).

Possible factorisations for $p(\xi)$

- One of the below holds:
- Case 1: $p=0$.
- Case 2: p has a linear factor.
- Case 3: $p=\lambda\left(g^{i j} \xi_{i} \xi_{j}\right)^{2}$ for irreducible $g^{i j} \xi_{i} \xi_{j}$.
- Example: isotropic media, $\kappa=f *_{g}, g$ Lorentz
- Also characterisation (Favaro, Bergamin, Annalen der Physik 523, 2011).
- Case 4: $p=\left(g^{i j} \xi_{i} \xi_{j}\right)\left(h^{i j} \xi_{i} \xi_{j}\right)$ with both factors irreducible and non-proportional.
- Example: uniaxial media.
- Case 5: p is irreducible.
- Example: biaxial media.

Example:

- Uniaxial medium. $\epsilon=\operatorname{diag}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{2}\right), \mu>0$.
$F(\kappa)=$ union of two Lorentz null cones

- Theorem: [D.] Suppose $\kappa \in \Omega_{2}^{2}\left(\mathbb{R}^{4}\right)$ is constant coefficient. Furthermore, suppose that
(i) κ is non-dissipative,
(ii) κ is invertible,
(iii) $F(\kappa)=$ union of two Lorentz null cones.

Then there only three possibilities:

Possibility 1 of 3: Uniaxial-type media

- Constitutive equation: $\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}, \operatorname{sgn} \beta_{1}=\operatorname{sgn} \beta_{2} \neq 0\right]$

$$
\binom{\mathbf{H}}{\mathbf{D}}=\left(\begin{array}{ccc|ccc}
\alpha_{1} & & & \beta_{1} & & \\
& \alpha_{2} & & \alpha_{2} & & \beta_{2} \\
\\
\hline \beta_{1} & & & \beta_{2} \\
& \beta_{2} & & \alpha_{1} & & \\
& & & -\alpha_{2} & \\
& & -\alpha_{2}
\end{array}\right) \cdot\binom{\mathbf{E}}{\mathbf{B}}
$$

- Relative configuration of null cones:

Possibility 2 of $3:$

- Constitutive equation: $\left[\alpha_{1}, \alpha_{2} \in \mathbb{R}, \beta_{1}, \beta_{2} \in \mathbb{R} \backslash\{0\}\right]$

$$
\binom{\mathbf{H}}{\mathbf{D}}=\left(\begin{array}{ccc|ccc}
\alpha_{1} & & & \beta_{1} & & \\
& \alpha_{1} & & & \beta_{2} & \\
\hline-\beta_{1} & & \alpha_{2} & & & \beta_{2} \\
& \beta_{2} & & \alpha_{1} & & -\alpha_{2} \\
& & & & \\
& & & -\alpha_{2}
\end{array}\right) \cdot\binom{\mathbf{E}}{\mathbf{B}}
$$

- Relative configuration of null cones:

Possibility 3 of $3:$

- Constitutive equation: $\left[\alpha \in \mathbb{R}, \beta \in \mathbb{R} \backslash\{0\}, w=\sqrt{1+4 \beta^{2}}\right]$

$$
\binom{\mathbf{H}}{\mathbf{D}}=\frac{\beta}{w}\left(\begin{array}{ccc|ccc}
\alpha & & & & -\frac{w^{2}}{\beta} & \\
& \alpha & 2 & -w-2 & \\
\hline-\beta & & \alpha & & & -w \\
& -w & & -\alpha & & \\
& & -w+2 & & \\
-2 & -\alpha
\end{array}\right) \cdot\binom{\mathbf{E}}{\mathbf{B}}
$$

- Relative configuration of null cones:

Outline of proof: (in theory)

1. Factorisation:

$$
\left(\kappa_{a b}^{p q} \kappa_{c d}^{r i} \kappa_{e f}^{s j} \varepsilon^{a b e k} \varepsilon^{c d f l} \varepsilon_{p q r s}\right) \xi_{i} \xi_{j} \xi_{k} \xi_{I}=\left(g^{i j} \xi_{i} \xi_{j}\right)\left(h^{k l} \xi_{k} \xi_{l}\right)
$$

2. Identifying coefficients gives 35 polynomial equations:

$$
P_{k}(\kappa, \quad g, \quad h)=0, \quad k \in\{1, \ldots, 35\}
$$

3. Eliminate variables in g and h

$$
\begin{equation*}
Q_{k}(\kappa)=0, \quad k \in\{1, \ldots, N\} \tag{*}
\end{equation*}
$$

4. Solve all κ that satisfy equation (*).

- Include solutions where g, h are Lorentz.
- Exclude solutions with other signatures, complex g, h, etc.

Outline of proof: (in practice)

(a) Eliminating variables in polynomial systems can be done with Gröbner bases, but is computationally expensive (35 eqs, $21+10+10=41$ variables, 3rd order).
(b) Simplify κ by a Jordan normal form.

- Idea: κ can be represented by 6×6 matrix K.
- $S \cdot K \cdot S^{-1}=$ Jordan block form.
- This can be done by a coordinate transformation (+ simple operators) (Schuller, Witte, Wohlfarth, Annals of Physics 325, 2010)
- \rightarrow Non-dissipative media has 23 normal forms:
- Case by case analysis of normal forms $1, \ldots, 7$.
- Exclude normal forms $8, \ldots, 23$ by general results from Schuller et al.

Thank you!

Possibility 3 of 3 : one, two, or three phase

 velocities

