Classification of electromagnetic media by behaviour of phase velocity

Matias Dahl

Aalto University, Finland

Lancaster, Department of physics — September 2012.

Problem statement

- Two descriptions of homogeneous anisotropic electromagnetic medium
 - Analytic: Coefficients in Maxwell's equations.
 - ► Geometric/Dynamic: Phase velocity of plane waves.

Questions:

- How are these related?
- Two definitions of isotropic medium?

Maxwell Equations

- ▶ Base space: R⁴ (or arbitrary 4-manifold)
- ▶ Electromagnetic fields: $F, G \in \Omega^2(\mathbb{R}^4)$.
- Sourceless Maxwell's equations:

$$dF = 0,$$

dG = 0.

▶ Model for medium — Constitutive equation:

$$G = \kappa(F)$$

where $\kappa \in \Omega^2_2(\mathbb{R}^4)$ is an antisymmetric $\binom{2}{2}$ -tensor

$$\kappa \colon \Omega^2(\mathbb{R}^4) \to \Omega^2(\mathbb{R}^4)$$

▶ Non-dissipative medium: for all $u, v \in \Omega^2(\mathbb{R}^4)$,

$$\kappa(u) \wedge v = u \wedge \kappa(v)$$

Back to \mathbb{R}^3

- $ightharpoonup \mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3, \quad F = B + E \wedge dt, \qquad G = D H \wedge dt.$
- Sourceless Maxwell's equations:

$$\begin{split} \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t}, & \nabla \cdot \mathbf{D} &= 0, \\ \nabla \times \mathbf{H} &= \frac{\partial \mathbf{D}}{\partial t}, & \nabla \cdot \mathbf{B} &= 0. \end{split}$$

- ► Model for medium: $\begin{pmatrix} H \\ D \end{pmatrix} = \begin{pmatrix} \mathscr{C} & \mathscr{B} \\ \mathscr{A} & \mathscr{D} \end{pmatrix} \cdot \begin{pmatrix} E \\ B \end{pmatrix}$
- ▶ Non-dissipative: $\mathscr{A} = \mathscr{A}^t$, $\mathscr{B} = \mathscr{B}^t$, $\mathscr{C} + \mathscr{D}^t = 0$. κ is determined by 21 real numbers.
- **Poynting's theorem:** If κ does not depend on t,

Dahl

$$\frac{d}{dt}\int_{U}\frac{1}{2}\left(E\wedge D+H\wedge B\right)=-\int_{\partial U}E\wedge H.$$

Fresnel surface

▶ Plane wave solution: (κ constant coefficient)

$$F = \operatorname{Re} \left\{ e^{i\Phi} \alpha \right\}, \quad G = \operatorname{Re} \left\{ e^{i\Phi} \beta \right\}.$$

▶ dG = 0, $G = \kappa(F)$ implies: $d\Phi \wedge \beta = 0$, $\beta = \kappa(\alpha)$. Thus.

$$(d\Phi \wedge \kappa)(\alpha) = 0$$

This has a solution $\alpha \neq 0$ if and only if $p(d\Phi) = 0$ where p is the **Fresnel polynomial** $p(\xi) = \mathcal{G}^{ijkl} \xi_i \xi_j \xi_k \xi_l$ for

$$\mathscr{G}^{\mathit{ijkl}} = \kappa_{\mathit{ab}}^{\mathit{pq}} \kappa_{\mathit{cd}}^{\mathit{ri}} \kappa_{\mathit{ef}}^{\mathit{sj}} \varepsilon^{\mathit{abek}} \varepsilon^{\mathit{cdfl}} \varepsilon_{\mathit{pqrs}}.$$

- $\{\xi \in T^*\mathbb{R}^4 : p(\xi) = 0\}$ is the **Fresnel surface** $F(\kappa)$.
- Obukhov, Fukui, Rubilar (2000).

Invariances of Fresnel surface $F(\kappa)$

▶ For any κ and $\alpha \neq 0$,

$$F(\alpha \kappa) = F(\kappa),$$

 $F(\kappa) = F(\kappa + \alpha \operatorname{Id}).$

▶ For any invertible κ ,

$$F(\kappa) = F(\kappa^{-1}).$$

► All invariances are not known.

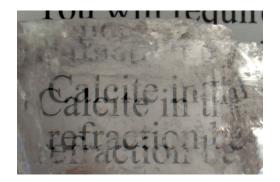
Example:

▶ **Isotropic medium:** $\kappa = \lambda *_g$ for Lorentz metric.

 $F(\kappa)$ = Lorentz null cone of g.

▶ Uniaxial medium. $\epsilon = \text{diag}(\epsilon_1, \epsilon_2, \epsilon_2)$, $\mu > 0$.

 $F(\kappa)$ = union of two Lorentz null cones



Classification of medium with two Lorentz null cones

- ▶ **Theorem:** [D.] Suppose $\kappa \in \Omega_2^2(\mathbb{R}^4)$ is constant coefficient. Furthermore, suppose that
 - (i) κ is non-dissipative,
 - (ii) κ is invertible,
 - (iii) $F(\kappa)$ = union of two Lorentz null cones.

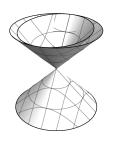
Then there only three possibilities:

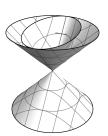
Possibility 1 of 3: Uniaxial-type media

▶ Constitutive equation: $[\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}, \operatorname{sgn} \beta_1 = \operatorname{sgn} \beta_2 \neq 0]$

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{D} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_1 & & & \beta_1 & & \\ & \alpha_2 & & & \beta_2 & \\ & & \alpha_2 & & & \beta_2 \\ & & \beta_1 & & & -\alpha_1 & \\ & & \beta_2 & & & -\alpha_2 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$

▶ Relative configuration of null cones:





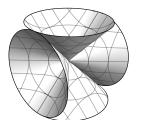
Possibility 2 of 3:

▶ Constitutive equation: $[\alpha_1, \alpha_2 \in \mathbb{R}, \beta_1, \beta_2 \in \mathbb{R} \setminus \{0\}]$

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{D} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_1 & & & \beta_1 & & \\ & \alpha_1 & & & \beta_2 & \\ & & \alpha_2 & & & \beta_2 \\ \hline -\beta_1 & & & -\alpha_1 & \\ & & \beta_2 & & & -\alpha_2 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$

Relative configuration of null cones:



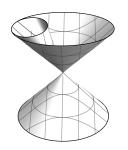


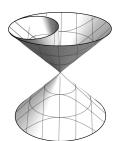
Possibility 3 of 3:

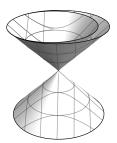
▶ Constitutive equation: $[\alpha \in \mathbb{R}, \beta \in \mathbb{R} \setminus \{0\}, w = \sqrt{1+4\beta^2}]$

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{D} \end{pmatrix} = \frac{\beta}{w} \begin{pmatrix} \alpha & & -\frac{w^2}{\beta} & \\ \alpha & 2 & -w-2 & \\ & \alpha & & -w-2 & \\ & -\beta & & -\alpha & \\ & -w & -w+2 & & -2 & -\alpha \end{pmatrix} \cdot \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$

Relative configuration of null cones:







Outline of proof: (in theory)

1. Factorisation:

$$\left(\kappa_{ab}^{pq}\kappa_{cd}^{ri}\kappa_{ef}^{sj}\varepsilon^{abek}\varepsilon^{cdfl}\varepsilon_{pqrs}\right)\xi_{i}\xi_{j}\xi_{k}\xi_{l}=(g^{ij}\xi_{i}\xi_{j})(h^{kl}\xi_{k}\xi_{l})$$

2. Identifying coefficients gives 35 polynomial equations:

$$P_k(\kappa, g, h) = 0, k \in \{1, ..., 35\}$$

3. Eliminate variables in g and h

$$Q_k(\kappa) = 0, \quad k \in \{1, \dots, N\}$$
 (*)

- **4**. Solve all κ that satisfy equation (*).
 - ▶ Include solutions where *g*, *h* are Lorentz.
 - Exclude solutions with other signatures, complex g, h, etc.

Outline of proof: (in practice)

- (a) Eliminating variables in polynomial systems can be done with *Gröbner bases*, but is computationally expensive (35 eqs, 21+10+10=41 variables, 3rd order).
- (b) Simplify κ by a Jordan normal form.
 - Idea: κ can be represented by 6×6 matrix K.
 - $S \cdot K \cdot S^{-1} =$ Jordan block form.
 - This can be done by a coordinate transformation (+ simple operators) (Schuller, Witte, Wohlfarth, Annals of Physics 325, 2010)
 - ightharpoonup Non-dissipative media has 23 normal forms:
 - ▶ Case by case analysis of normal forms 1, ..., 7.
 - ► Exclude normal forms 8, ..., 23 by general results from Schuller et al.

Classification of medium with one Lorentz null cone

- ▶ **Theorem:** [D.] Suppose $\kappa \in \Omega_2^2(\mathbb{R}^4)$ is constant coefficient. Furthermore, suppose that
 - (i) κ is non-dissipative,
 - (ii) κ is invertible,
 - (iii) trace $\kappa = 0$
 - (iv) $F(\kappa) = \text{Lorentz null cone of a Lorentz metric } g$.

Then there exists a $\lambda \in \mathbb{R} \setminus \{0\}$ such that

$$\kappa = \lambda *_{\mathsf{g}}$$
.

Classification of isotropic media

- Previous results:
 - ▶ [Obukhov, Fukui, Rubilar, 2000] Case $\mathscr{C} = 0$.
 - ▶ [Favaro, Bergamin, 2011] κ is isotropic if $p(\xi) = C(g^{ij}\xi_i\xi_j)^2$ for a g with Lorentz signature.
- ► For related results, see also: [Obukhov, Rubilar, 2002], [Hehl, Lämmerzahl, 2004], [Itin, 2005]

Summary

- ▶ Isotropic medium can recognised from $F(\kappa)$ (under mild assumptions).
- Complete classification of medium with two Lorentz null cones.
 - More complicated.
 - Two new medium classes.
- ▶ One can never uniquely determine κ from $F(\kappa)$. There are always some invariances. To determine κ one needs more information (like polarisation).
- ▶ Here we have worked with constant coefficient media \mathbb{R}^4 . The results also generalise to arbitrary medium tensors on an arbitrary 4-manifold, but then the results is pointwise.

Thank you!

Possibility 3 of 3: one, two, or three phase velocities

