When do electromagnetic Gaussian beams propagate using Riemannian geometry

Matias Dahl
Institute of Mathematics, HUT

Tampere, 30 May 2005, Advanced Computational Electromagnetism Seminar

Assumptions

- Everything is smooth
- Domain $U \subseteq \mathbb{R}^3$, bounded/unbounded, topologically trivial
- Media is anisotropic, non-homogeneous, no time dependence
- ε, μ real, positive definite, simultaneously diagonalizable:

$$\varepsilon = R^{-1} \cdot \begin{pmatrix} \varepsilon_1 & & \\ & \varepsilon_2 & \\ & & \varepsilon_3 \end{pmatrix} \cdot R \qquad \mu = R^{-1} \cdot \begin{pmatrix} \mu_1 & & \\ & \mu_2 & \\ & & \mu_3 \end{pmatrix} \cdot R$$

Gaussian beam assumption

Trial:
$$E(x,t) = \operatorname{Re}\{e^{iP\theta(x,t)}E_0(x,t)\}$$

P > 0 big constant, E_0 complex vector field, θ complex phase function

Let $c:(0,1)\to U$ be a curve, and assume that

$$z = z(x,t) = x - c(t)$$

$$\theta(x,t) = \phi(t) + p(t) \cdot z + \frac{1}{2}z^T \cdot S(t) \cdot z$$

$$\phi, p \text{ real, Im } S \text{ positive definite}$$

Then

$$|\exp(iP\theta)| = \exp\left(-\frac{P}{2}z^T \cdot \operatorname{Im} S \cdot z\right)$$

= Gaussian bell curve

Plugging all this into Maxwell's equations gives condition on c, ϕ, p, S :

- ϕ is constant
- c and p is a solution to Hamilton's equations with Hamiltonian h_+ or h_- [h_\pm depend only on media]
- S is a solution to a matrix Riccati equation (depending on h_{\pm})

Conclusion:

- Media \longrightarrow Hamiltonians h_+ and $h_ \longrightarrow$ two types of Gaussian beams
- Gaussian beam determined by c, ϕ, p, S and these are determined by "simple" equations

Definition of h_{\pm}

• Let

$$M(x,z) = \begin{pmatrix} \varepsilon_1 & & \\ & \ddots & \\ & & \mu_3 \end{pmatrix} \cdot \begin{pmatrix} & z \times I \\ -z \times I & \end{pmatrix}$$

- Spectrum of $M(x,z) = \pm \{0, h_+(x,z), h_-(x,z)\}$
- $h_+ \geq 0$ on $U \times \mathbb{R}^3$

Example: In isotropic media,

$$h_{\pm}(x,z) = \frac{1}{\sqrt{\varepsilon(x)\mu(x)}}$$

Geometrization of Gaussian beams

For some $i \neq j$, $\varepsilon_i \mu_j = \varepsilon_j \mu_i$

⇒ Gaussian beams propagate using Riemannian geometry

Examples

- c is a geodesic in this geometry
- S can be solved from a curvature equation
- In isotropic media: $g_{ij} = \sqrt{\varepsilon \mu} \, \delta_{ij}$
- If $\varepsilon_2\mu_3=\varepsilon_3\mu_2$, then

$$g_{+,ij}(x) = (R^{-1} \cdot \operatorname{diag}(\sqrt{\varepsilon_2 \mu_3}, \sqrt{\varepsilon_1 \mu_3}, \sqrt{\varepsilon_1 \mu_2}) \cdot R)_{ij}$$

$$g_{-,ij}(x) = (R^{-1} \cdot \operatorname{diag}(\sqrt{\varepsilon_3 \mu_2}, \sqrt{\varepsilon_3 \mu_1}, \sqrt{\varepsilon_2 \mu_1}) \cdot R)_{ij}$$

Case: There are no $i \neq j$ such that $\varepsilon_i \mu_j = \varepsilon_j \mu_i$

