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Abstract

We study Gaussian beams for the wave equation on a Riemannian mani-
fold. For the transport equation we geometrize the leading term at the center
of the Gaussian beam. More precisely, if

u(x, t) = eiPθ(x,t)

(

u0(x, t) +
u1(x, t)

iP
+

u2(x, t)

(iP )2
+ · · ·

)

is a Gaussian beam propagating along a geodesic c, then we show that

u0(c(t), t) = C
1

(det Y (t))1/2

where C is a constant and Y is a complex Jacobi tensor. Using an invariance
property for the non-linear Riccati equation related to the Jacobi equation,
we prove that the leading term of the energy carries constant energy.

A Gaussian beam is an asymptotic solution to a linear hyperbolic equations that
have a very characteristic feature. Namely, at each time instant, the entire en-
ergy of the solution is concentrated around one point in space. When time moves
forward, the beam propagates along a curve, but always retains its shape of a
Gaussian bell curve. Electromagnetic Gaussian beams are also known as quasi-
photons. See [Kac02, Kac04, Kac05, Dah06]. For the wave equation, see [Ral82,
KKL01, Pop02, KL04], and for the elastic equation, see [KP85]. Historical ac-
counts on Gaussian beams can be found in [BP73, Ral82, Pop02].

Gaussian beams are governed by two sets of equations. The Hamilton-Jacobi
equation determines the phase function, and a set of transport equations deter-
mine the amplitude functions for a Gaussian beam (Section 1). An central prop-
erty for Gaussian beams is that the Hamilton-Jacobi equation geometrize. For
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example, in suitable media, Gaussian beams propagate along geodesics of a Rie-
mannian metric determined by the media. (This media may be inhomogeneous
and anisotropic.) As the geodesic equation is an ODE, this means that Gaussian
beams are much easier to propagate than the original equation, say, Maxwell’s
equations in the time domain. Therefore Gaussian beams have been used in the
traveltime problem: how long does it take for a signal to travel between two points
in space. This geometrization result is common to all Gaussian beams regardless
of their physical setting (acoustic, electric, or seismic). The reason for this is
that the Hamilton-Jacobi equation has the same form in all settings. On the other
hand, each physical setting gives rise to its own transport equations. For example,
in acoustics the transport equations are scalar equations whereas in electromag-
netism they are vector equations. Although these have been studied, and solution
methods are known in local coordinates [KKL01, Kac02], there does not seem
to exist many geometric treatments on these equations. An exception seem to
be [Sha94], which derives a Rytov’s law in electromagnetism in an essentially
isotropic media.

Theorems 2.1 and 2.2 are the main results of the present note. These show how
the leading amplitude term evaluated at the center of a Gaussian beam is related
to the complex Riccati equation and the complex Jacobi tensor (Section 1.2). Es-
sentially, a Jacobi tensor is a tensor analogue to a Jacobi field in Riemannian
geometry [EO76, Esc77, EO85]. See also [JP00, JP02] for a connection to Ray-
chaudhuri’s equation studied in general relativity. Apart from the Riemann geo-
metric interpretation, Theorems 2.2 and 2.1 are well known [TC85]. Assuming
that the underlying manifold is Rn (but has an arbitrary Riemannian metric) we
also show that asymptotically, the leading term in the Gaussian beam carries con-
stant energy. The proof of this is based on an invariance result for solutions to the
complex Riccati equation (Theorem 1.4).

All objects are assumed to be smooth, and by default, all functions are assumed
to be complex valued. By a manifold we mean a second countable, Hausdorff,
topological manifold equipped with smooth transition maps. The Einstein sum-
ming convention is used throughout. By TM and T (M, R) we mean the tangent
bundles for M over C and R, respectively. We always assume that I is an open
interval containing 0, and M is a manifold of dimension n.

1 Asymptotic expansion of u

On the Riemann manifold, the wave equation reads

utt − ∆u = 0.
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Here ∆ is the Laplace-Beltrami operator ∆ = ∇ · ∇ with respect to a metric
g that encodes the media properties. To define a Gaussian beam, let us briefly
review asymptotic solutions to the wave equation. For a detailed accounts on this
topic, see [KKL01, KL04].

Suppose u(x, t) is a function of the form

u(x, t) = eiPθ(x,t)

N
∑

k=0

uk(x, t)

(iP )k
, (1)

where N ≥ 0, P > 0 is a large constant, and θ, uk are complex functions. Func-
tion θ is the phase function and uk-functions are amplitude functions. In order for
u to be stable in the limit P → ∞, we assume that Im θ ≥ 0. Inserting u into the
wave equation and equating separate powers of (iP ) to zero yields

(θt)
2 − g(∇θ,∇θ) = 0, (2)

Lθ(u0) = 0, (3)

Lθ(uk+1) = (∂2
t − ∆)uk, k = 0, . . . , N − 1. (4)

Equation (2) is the Hamilton-Jacobi equation, and equations (3)-(4) are the trans-
port equations. In these, the transport operator is given by

Lθ(u) = 2θtut − 2g(∇θ,∇u) +
((

∂2
t − ∆

)

θ
)

· u, u ∈ C∞(M × I).

Here g(u, v) does not involve a complex conjugate.

1.1 Gaussian beams

Let us construct a Gaussian beam propagating along a smooth curve c : I → M
that, for simplicity, is covered by local coordinates xi. Furthermore, let

φ : I → C, p : I → C
n, H : I → C

n×n

be the first three coefficients in the Taylor expansion of θ evaluated on c(t);

φ(t) = θ(c(t), t), pj(t) =
∂θ

∂xj
(c(t), t), Hjk(t) =

∂2θ

∂xj ∂xk
(c(t), t).

Then u is a Gaussian beam on c provided that for all t ∈ I:

C1. p(t) = (pi(t))i is non-zero.

C2. φ(t) and p(t) are real.
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C3. H(t) = (Hij(t))ij is symmetric and its imaginary part is positive definite.

These conditions do not depend on local coordinates, and using the chain rule,

θ(x, t) = φ0(t) + pi(t)z
i +

1

2
Hij(t)z

izj + O(|z|3), (5)

where zi = zi(x, t) = xi − ci(t). Therefore,

| exp (iP θ(x, t)) | ≈ exp

(

−P

2
zi Im Gijz

j

)

since Im G = Im H . That is, at time t, u is concentrated around c(t). Next, we
can solve φ, c, and H from the Hamilton-Jacobi equation (2). This is done by
expanding the Hamilton-Jacobi equation into a Taylor series centered at c(t) and
equating the first three Taylor coefficients. This gives:

1. φ0 is constant.

2. c is a geodesic with respect to g, and

pi(t) = gij ċ
j.

With no loss in generality, we assume that c is pathlength parameterized so
that g(ċ, ċ) = 1.

3. In local coordinates, H is determined by a complex matrix Riccati equa-
tion. Unfortunately, H is not a tensor. However, by slightly perturbing H ,
one gets a tensor G. Let Λ(t) = (Γm

ij pm)ij , where Γi
jk are the Christoffel

symbols, and let

G(t) = Gij(t)dxi ⊗ dxj
∣

∣

c(t)
, Gij = (H − Λ)ij.

Then G is the 2-tensor on c determined by the complex tensor Riccati equa-
tion

G′ + GCG − R = 0. (6)

Here G′ is the covariant derivative of G along c, and C = C ij(t)dxi ⊗
dxj

∣

∣

c(t)
and R = Rij(t)dxi ⊗ dxj

∣

∣

c(t)
are tensors on c determined by

Cij = gij − ċiċj, Rij = pmRm
ijkċ

k,

and Rm
ijk are components of the Riemann curvature tensor

Rm
ijk =

∂Γm
ik

∂xj
−

∂Γm
ij

∂xk
+ Γs

ikΓ
m
js − Γs

ijΓ
m
ks.

Assuming G satisfies C3. at t = 0, this condition holds for all t.

It should be emphasized that the above equations for c, p and G are independent of
local coordinates. That is, these objects geometrize using Riemannian geometry.
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1.2 The transverse Riccati equation

In this section we review the transverse Riccati equation. It is the projection of the
Riccati equation (6) onto the orthogonal complement of the underlying geodesic.
We also show how this transverse Riccati equation in related to transverse Jacobi
equation.

Let Π = Πj
i (t)

∂
∂xj ⊗ dxi|c(t) be the tensor determined by

Πj
i = giaC

aj = δj
i − piċ

j,

where δj
i is the Kronecker delta symbol. Then Π is a projection that maps Tc(t)M

onto the orthogonal complement c⊥ of ċ(t),

c⊥|t = {a ∈ Tc(t)M : g(a, ċ(t)) = 0}.

A tensor L is transversal if L is a (1, 1)-tensor on c and ΠLΠ = L. We identify
such tensors with pointwise linear maps ċ⊥ → ċ⊥.

When working with ċ⊥, it is convenient to use Fermi coordinates [MM63, BU81,
Dah]. These are local coordinates on a Riemannian manifold adapted to a fixed
geodesic. Suppose c : (a′, b′) → M is a geodesic that can be covered with one
coordinate chart, and suppose that a′ < a < b < b′. Then there exists local
coordinates {x̃i} defined in the tube x̃1 ∈ (a, b), (x̃2)2 + · · · + (x̃n)2 < ε, and for
t ∈ (a, b) these satisfy:

(t, 0, 0) represents c(t), g̃ij(c(t)) = δij, Γ̃i
jk(c(t)) = 0.

The last property implies that in Fermi coordinates, the covariant derivative of a
transverse tensor coincides with the usual derivative. In consequence, the deriva-
tive of a composition of two (1, 1)-tensors satisfies Leibniz’ rule. It also follows
that the derivative of a transverse tensor is again a transverse tensor.

Let E be the (1, 1)-tensor

E = Ei
j

∂

∂xi
⊗ dxj, Ei

j = giaGaj. (7)

Then E is a solution to the Riccati equation

E ′ + EΠE − K = 0 (8)

where K is the curvature tensor

K = Ki
j

∂

∂xi
⊗ dxj, Ki

j = giaRaj.
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To verify equation (8) it suffices to write out the equation in Fermi coordinates
whence it reduces to the Riccati equation for G.

Let F be the projection of E onto ċ⊥. That is, the transverse (1, 1)-tensor

F = Π · E · Π,

whence F satisfies the Riccati equation,

F ′ + F 2 − K = 0. (9)

To verify equation (9), we have Π′ = 0, so F ′ = ΠE ′Π, and equation (9) follows
from equation (8) since K is a transverse tensor [Dah]. To formulate the next
theorem, we need the transpose LT and complex transpose L∗ of a (1, 1)-tensor L
on c. The transpose LT is determined by

g(LTa, b) = g(a, Lb), a, b ∈ Tc(t)M,

and the complex transpose L∗ = L
T

, where L is the (componentwise) complex
conjugate of L. If L = Li

jdxj ⊗ ∂
∂xi is a (possibly transverse) tensor on c, then

components for LT and L∗ are

(LT )i
j = girLs

rgsj, (L∗)i
j = girL

s

rgsj,

so if we represent L as a matrix (Li
j)ij in Fermi coordinates, then matrices for LT

and L∗ are just the transpose and Hermitian transpose of Lij . Also, using Fermi
coordinates, we have (Lτ )′ = (L′)τ for τ = ∗, T .

The Siegel upper half plane can be seen as a generalization of the upper half plane
of the complex plane. For an introduction, see [Fre99].

Definition 1.1 (Siegel upper half plane). A transverse tensor L : ċ⊥
∣

∣

c(t)
→ ċ⊥

∣

∣

c(t)

is in the Siegel upper half plane provided that

(i) L is symmetric (L = LT ),

(ii) v 7→ g(Im L · v, v) is positive definite for v ∈ ċ⊥
∣

∣

c(t)
.

Theorem 1.2 (Complex Jacobi tensor). Suppose A0, F0 are (1, 1)-tensors at
c(0). Then there exists a unique (1, 1)-tensor Y on c determined by

Y ′′ − K · Y = 0, (10)

Y (0) = A0, Y ′(0) = F0.

This Y satisfies the following properties:
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1. If A0, F0 are transverse, then Y is transverse.

2. For any initial values, ΠY Π is a transverse solution from transverse initial
values ΠA0Π, ΠF0Π. Also, if Y and Ỹ are solutions from initial values A0,
F0, and ΠA0Π, ΠF0Π, respectively, then Ỹ = ΠY Π.

3. If Y1 and Y2 are two solutions to the complex Jacobi equation, then

((Y ′

1)
τ · Y2 − Y τ

1 · Y ′

2)
′
= 0, τ = T, ∗.

4. Suppose A0 = Id
∣

∣

ċ⊥
, and F0 is a transverse tensor in the Siegel upper half

plane. Then Y is invertible (as a map ċ⊥ → ċ⊥) for all t.

Proof. We may write equation (10) as a first order linear equation,

(

Y
Z

)′

=

(

0 I
K 0

) (

Y
Z

)

, (11)
(

Y
Z

)

∣

∣

∣

t=0
=

(

A0

F0

)

.

Therefore a unique Y exists for all t ∈ I . Property 1. follows by writing out these
equations in Fermi coordinates; if the first row and column are zero at t = 0,
they are zero for all t. Property 2. follows since (ΠLΠ)′ = ΠL′Π, and since K
is transversal [Dah]. Property 3 follows by a short calculation using equation (10)
and that K is symmetric [Dah]. For property 4., suppose that Y · η = 0 for some
non-zero η ∈ ċ⊥|s. By a parallel transport, we may extend η into a vector field
on c. (Since this is just the Euclidean parallel transport in Fermi coordinates, we
have η ∈ ċ⊥ for all t. In particular, η(0) 6= 0.) Let

f(t) = g (((Y ′)∗ · Y − Y ∗ · Y ′) · η, η) , t ∈ I.

For a symmetric tensor we have Im S = −1
2i

(S∗ − S). Hence f(0) 6= 0. On the
other hand, f(s) = 0 and f ′ = 0, so Y must be invertible.

1.3 Connections between the Riccati and Jacobi equation

The complex Riccati equation and the complex Jacobi equation (10) are closely
related. To see this, let us assume that F0 is a transverse tensor in the Siegel upper
half plane. Furthermore, let F be the solution to equation (9) from F (0) = F0,
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and let Y be the solution to equation (10) from Y (0) = Id |ċ⊥, Y ′(0) = F0. Then
F = Y ′ · Y −1 and Y is given by

Y ′ = F · Y,

Y (0) = Id |ċ⊥, Y ′(0) = F (0).

Hereafter, we always assume that F0, F and Y are related in this way.

Proposition 1.3. Tensors F, Y ′ are invertible, and:

1. F is in the Siegel upper half plane for all t.

2. (det Y )′ = trace F · (det Y ).

3. If we denote by Im F0 also the parallel transport of Im F0 along c, then

Im F = (Y −1)∗ · Im F0 · Y −1,

Im
(

F−1
)

= −(Y ′)−∗ · Im F0 · (Y ′)−1.

Proof. That F is invertible is proven in [Dah], and Y ′ is invertible as Y ′ = F ·
Y . By Theorem 1.2.3, F is symmetric. To see that F is positive definite let
us first note that in Fermi coordinates the parallel transport is just the Euclidean
transport. Therefore, the spectrum of a (1, 1)-tensor is preserved under a parallel
transport. (Alternatively, one can write down a Lax-pair type equation in arbitrary
local coordinates.) Hence the spectrum of the parallel transport of Im F0 remains
constant along c, and the result follows from Property 3. proven below. Property
2. follows from the matrix identity

(det A)′ = trace(A′A−1) · det A.

For property 3., we have

−1

2i
(Y ′∗Y − Y ∗Y ′) = Im F0

with given notation. The first claim follows since

Im F =
−1

2i
(F ∗ − F )

=
−1

2i
Y −∗ (Y ′∗Y − Y ∗Y ′) Y −1.

The proof of the latter claim is analogous (F−1 is also symmetric).

8



Theorem 1.4 (An invariance for the Riccati equation). Let E is the tensor de-
fined in equation (7). Then

det Im E

det Im F
= constant.

Proof. In Fermi coordinates let us partition the symmetric tensor E as

E =

(

λ uT

u F

)

,

where λ : I → C, u : I → C(n−1)×1, and F : I → C(n−1)×(n−1) are functions with
initial values λ0, u0, F0, respectively. Here F is also the local representation of
the projection of E onto ċ⊥. Let us also denote the real and imaginary parts by
sub-indices r and i, respectively. Say, λ = λr + iλi. Using a Shur complement on
Im E, we have

det Im E

det Im F
= λi − uT

i · (Fi)
−1 · ui. (12)

Since E is a solution to the Riccati equation (8), λ, u, and F satisfy

λ′ = −uT · u,

u′ = −F · u,

F ′ + F 2 = K,

where K is a matrix representing the transverse curvature tensor K in Fermi co-
ordinates. Taking imaginary parts gives

λ′

i = −2uT
r · ui,

u′

i = −Fr · ui − Fi · ur,

F ′

i = −Fr · Fi − Fi · Fr.

Differentiating the right hand side in equation (12) gives the result.

2 Equation for leading term at (c(t), t)

At the center of a Gaussian beam (that is, at z = 0), we have eiPθ = 1, and
assuming that P k grows much faster than uk(c(t), t), we have

u(c(t), t) ≈ u0(c(t), t).
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It is therefore motivated to study the function

a(t) = u0(c(t), t).

We already know that this function is determined by equation (3). In this section
we show how a is related to both the Riccati equation and the Jacobi equation.

Theorem 2.1. Function a(t) satisfy

d

dt
a(t) = −1

2
trace F (t) a(t). (13)

Proof. The proof is based on the following identities:

θt(c(t), t) = −1, (14)

∇θ(c(t), t) = ċ(t), (15)

θtt(c(t), t) = Gij ċ
iċj, (16)

∆θ(c(t), t) = Gijg
ij. (17)

Equations (14)-(15) follow by differentiating (5). Equation (16) follows since
ṗl = Γjklċ

j ċk, which in turn follows from the geodesic equation and the identity
∂gij

∂xk = Γijk + Γjik. Equation (17) follows since

∆f = gij(Hess f)ij,

where Hess f is the Hessian of a function f ,

Hess f =

(

∂2f

∂xi ∂xj
− Γk

ij

∂f

∂xk

)

dxi ⊗ dxj.

For any u ∈ C∞(M × I), we have

Lθ(u) (c(t), t) = −2

(

ut + ċi ∂u

∂xi

)

+ (∂2
t − ∆)θ · u

= −2
d

dt
u(c(t), t) − C ijGiju,

where all evaluations are at t or (c(t), t). Since trace F = (ΠEΠ)i
i = CijGij, the

result follows follows from equation (3).

Property 2. in Lemma 1.3 now shows that we may write a in terms of Y :

Theorem 2.2. The unique solution to equation (13) is

a(t) =
1

(det Y (t))1/2
· a0,

where a0 ∈ C is the initial value for a at t = 0.
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3 Conservation of energy

For a complex solution u(x, t) to the wave equation, its energy density is defined
as [KKL01]

Eu(x, t) =
1

2

(

|ut|2 + g(∇u,∇u)
)

,

and the energy of u at time t is

E(t) =

∫

M

Eu(x, t)dV,

where dV =
√

det gdx is the Riemannian volume form of M . A key property
of (exact) solutions to the wave equation is that (as long as a solution does not
intersect a possible boundary) its energy is constant. Next we derive a similar
result for Gaussian beams.

The energy density of u (see equation (1)) is given by

Eu(x, t) = eθ|u0|2e−PzT
·ImG·zP 2 + lower order terms in P ,

where

eθ(x, t) =
1

2

(

|θt|2 + g(∇θ,∇θ)
)

.

In the previous section, we solved u0(c(t), t). By neglecting x-dependency in u0,
let us consider the approximate solution

v(x, t) =
1

(det Y (t))1/2
eiPθ(x,t)χ(x, t),

where χ(x, t) is a smooth cut-off function that at time t equals 1 near c(t) (see e.g.
[KKL01]), and

θ(x, t) = φ0 + pi(t)z
i +

1

2
Hijz

izj.

The next theorem states that asymptotically the energy of the approximate solution
v is constant. In other words, the leading term in equation (18) does not depend
on time. The theorem also states that physically, the initial value det Im E(0)
describes the energy of the solution.

Theorem 3.1 (Conservation of energy). Let M = Rn be equipped with an ar-
bitrary Riemannian metric. Then for each t ∈ I , the energy for the approximate
solution v is

Ev(t) =

√

πn

det Im E0

1

P
n
2
−2

+ O

(

1

P
n
2
−1

)

, P → ∞. (18)

Here E0 is the initial value for tensor E defined in equation (7).
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Proof. The energy density of v is

Ev(x, t) = e−PzT
·Im G·z

(

eθ(x, t)
1

| det Y (t)|χ
2 P 2 + A(x, t)P + B(x, t)

)

,

where A, B are smooth functions with compact support for each t. Integrating
each term over Rn and using Lemma A.1 shows that the latter two terms contribute
to Ev(t) with an O(1/P

n
2
−1)-term. Since c is pathlength parameterized, we have

eθ(c(t), t) = 1, and applying Lemma A.1 to the first term gives
√

πn det g

| det Y |2 · det Im G

1

P
n
2
−2

+ O

(

1

P
n
2
−1

)

.

By equation (7) we have det Im G = det g · det Im E, and the result follows by
Proposition 1.3.3 and Theorem 1.4.

A An asymptotic expansion

Lemma A.1. Suppose f : Rn → C is a rapidly decreasing function. If A is a real,
positive definite symmetric matrix then

∫

Rn

f(x)e−
P
2

xT
·A·xdx =

(2π)
n
2

(det A)
1

2

f(0)

P
n
2

+ O

(

1

P
n
2
+1

)

when P → ∞.

The below proof follows [Dui73] where a similar result is proven.

The space of rapidly decreasing functions S consists of smooth functions f : Rn →
C such that xα∂βf is bounded in Rn for all multi-indices α, β. For such functions
the Fourier transform F : S → S and its inverse are

Ff(ξ) =

∫

Rn

f(x)e−ix·ξdx, F
−1g(x) =

1

(2π)n

∫

Rn

g(ξ)eix·ξdξ.

Proof of Lemma A.1. If A is a real symmetric positive definite matrix, then

F

(

e−
1

2
xT

·A·x
)

(ξ) =
(2π)n/2

(det A)1/2
e−

1

2
ξT

·A−1
·ξ, ξ ∈ R

n. (19)

The case A = I is proven in [Sog93], and the general case follows by a coordinate
change y = S · x, where S is a symmetric positive square root of A. Let us also
note that if Ψ: Rn → R is a polynomial function satisfying Ψ ≥ 0, then

∫

Rn

f(x)e−
1

P
Ψ(x)dx =

∫

Rn

f(x)dx + O

(

1

P

)

(20)
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as P → ∞. This follows from the Taylor series,

ex = 1 + θ(x)x, x ∈ R,

where the Lagrange remainder term θ satisfies |θ(x)| ≤ 1 for x ≤ 0. The inequal-
ity follows since θ(x) = eξ for some ξ ∈ [0, x]. For functions f, g in S , we have
∫

Rn Ff · gdx =
∫

Rn f · Fgdx [Sog93]. Using the above observations, the left
hand side in the claim can be written as

∫

Rn

F
−1f · F e−

P
2

xT
·A·xdx

= B

∫

Rn

F
−1f(ξ) · e− 1

2P
ξT

·A−1
·ξdξ, B =

1

(det A)1/2

(

2π

P

)
n
2

= B

(
∫

Rn

F
−1fdξ + O

(

1

P

))

.

The result follows since
∫

Rn F−1fdx = (FF−1f)(0) = f(0).
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